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Abstract—In this paper, we study how colocation datacenter energy cost can be effectively reduced in the wholesale electricity market

via cooperative power procurement. Intuitively, by aggregating workloads and renewables across a group of tenants in a colocation

datacenter, the overall power demand uncertainty of the colocation datacenter can be reduced, resulting in less chance of being

penalized when participating in the wholesale electricity market. We use cooperative game theory to model the cooperative electricity

procurement process of tenants as a cooperative game, and show the cost saving benefits of aggregation. Then, a cost allocation

scheme based on the marginal contribution of each tenant to the total expected cost is proposed to distribute the aggregation benefits

among the participating tenants. Besides, we propose proportional cost allocation scheme to distribute the aggregation benefits among

the participating tenants after realizations of power demand and market prices. Finally, numerical experiments based on real-world

traces are conducted to illustrate the benefits of aggregation compared to noncooperative power procurement.

Index Terms—Cooperative game, colocation datacenter, energy management, wholesale electricity market, cost allocation.

✦

1 INTRODUCTION

W ITH the booming of Internet-based and cloud com-
puting services in recent years, datacenters hosting

these services have become ubiquitous in every sector of our
economy, and their energy consumption has been skyrock-
eting. According to a report [1] by the Natural Resources
Defense Council, datacenters in the U.S. consumed about 91
billion kWh of electricity in 2013, representing 2% of total
U.S. electricity consumption and costing U.S. businesses $13
billion in annual electricity bills, and their total electricity
consumption is estimated to be 139 billion kWh in 2020.
Energy cost accounts for a significant fraction (about 42%)
of the datacenter operating expense [2], and this fraction
is growing at an alarming rate of 12% annually [3]. Con-
sequentially, reducing energy cost has become a critical
concern for datacenter operators.

In order to reduce the growing electricity bills of dat-
acenters, from the demand side, substantial efforts have
been made, ranging from hardware such as energy-efficient
servers, storage devices, and network switches, to software
such as virtualization and dynamic CPU speed scaling and
capacity provisioning, which have led to dramatic improve-
ments in the energy-efficiency of datacenters. On the other
hand, it is also important for datacenters to manage their
energy cost from the supply side. As large consumers, data-
centers typically have multiple options to procure electricity
to meet their power demand. For instance, a datacenter
may purchase power from a retailer such as a local utility
company with a pre-specified rate by signing bilateral con-
tracts beforehand, or operate by leveraging on-site power
generators and energy storage systems [5].
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Given the significant power consumption and deregu-
lation of electricity market, another promising opportunity
to reduce datacenter energy cost is emerging: datacenters
can directly participate in the wholesale electricity market to
meet their power demand. While it is typical for consumers
to buy electricity from local utility companies, some inde-
pendent system operators (ISOs), such as Electric Reliability
Council of Texas (ERCOT) [6] and California ISO [7], have
recently developed a market that allows consumers to pur-
chase electricity directly from power suppliers by actively
participating in the electricity market. Indeed, datacenter
operators like Google have been granted the authority to
trade in the wholesale electricity market for the purpose of
managing their own energy cost [8]. The key advantage for
datacenters to procure electricity from the wholesale electricity
market instead of a local utility company is that they can avoid
the insurance premiums, service charges, and mark-up included
by utilities in retail rates [9].

However, a major challenge for datacenters in procuring
power directly from the wholesale electricity market is the
uncertainty of market prices and their power demand. In
most regions of U.S., the wholesale electricity market for
electrical power is organized into a two-settlement structure:
the day-ahead forward market and the real-time balancing
market. The consumers need to make a commitment or bid
about their scheduled energy usage to the day-ahead market
at first, and then any deviations between the scheduled
and actual usage are settled in the real-time balancing mar-
ket and subject to financial penalties. Since the day-ahead
market is often closed several hours (e.g., 14 to 38 hours
in California ISO) ahead of the actual operating time, this
leaves datacenters vulnerable to high deviation penalties
due to their highly uncertain power demand. In addition,
market prices are uncertain and hard to predict as well
due to the dynamic nature of the market. Therefore, it is
imperative for datacenters to mitigate risks associated with
these sources of uncertainty in order to maximize the cost
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saving in procuring power from the wholesale electricity
market directly.

In this paper, we aim to address the above challenge and
optimize datacenter participation strategies in the wholesale
electricity market for minimizing energy cost of datacenters.
Specifically, we focus on an important but under-explored
type of datacenters: colocation datacenters. In a colocation
datacenter, multiple tenants house their servers at a shared
place. There are more than 1200 colocation datacenters in
US and its market is around $43 billion with annual growth
rate to be 11% [1]. Although it is risky for tenants to
participate in the market individually due to the uncertainty
of their workload arrivals and possible on-site renewable
generation, this paper takes an aggregation-based approach
that transforms these independent tenants from isolated
entities into coordinated ones in the market. Our essential
idea is to exploit the statistical diversity of workloads and
renewables across different tenants and incentivize them
to bid collectively in the day-ahead market. Intuitively, by
aggregating workloads and renewables from different ten-
ants, the uncertainty of total power demand can be reduced,
resulting in less chance of being penalized for deviations
in the real-time balancing market and higher energy cost
saving.

To incentivize aggregation and distribute aggregation
benefits among tenants, we propose to use cooperative game
theory. Specifically, the problem can be formulated into a
cooperative game with transferrable cost. In this game, the
set of players is the set of tenants who seek to cooperate
in reducing electricity cost. We first prove that coalitional
formation can reduce energy cost compared to individual
power procurement in the wholesale electricity market.
Then our cooperative game is shown to be balanced and
therefore has a nonempty core. Given that the two existing
cost allocation methods, the Shapley value and nucleolus,
are not applicable to our game, we design an efficient cost
allocation scheme that can guarantee mutual benefits for all
participating tenants such that no one has the incentive to
break up from the coalition and thus locate a cost allocation
in the core. Besides, we discuss how to allocate the cost to
each tenant after realizations of power demand and market
prices. As the cost function of our cooperative game is
defined in expectation, there might be some days such that
the participating tenants need to pay more compared to the
realized cost. Therefore, coalitional members may choose to
deviate from such coalition if overpayment keeps occurring.
Therefore, we propose a cost allocation method based on the
proportion of the realized cost on every day to ensure that
in the long run, the allocated realized cost on average will
approach the expected cost almost surely.

The rest of the paper is organized as follows. Related
work is reviewed in Section 2. A brief overview of coop-
erative game theory is given in Section 3. In Section 4, we
describe the models for tenant power consumption and two-
settlement electricity market. In Section 5, we model the
datacenter aggregation process as a cooperative game and
quantify the benefits of aggregation. Then, the core of the
formulated game is shown to be nonempty, and an efficient
scheme is proposed to find a cost allocation belonging to
the core, and the sharing of realized cost is discussed in
Section 6. Simulation results based on real-world traces are

presented in Section 7. Finally, the conclusion is given in
Section 8.

2 RELATED WORK

In the past decade, multiple schemes have been proposed
to reduce the electricity bill of datacenters. From the de-
mand side, in terms of engineering approaches, energy-
efficient servers, storage devices and network switches and
advanced cooling have been designed to improve the energy
efficiency. On the other hand, in terms of algorithmic ap-
proaches, dynamic capacity provisioning [10] is developed
to reduce energy cost by dynamically turning off surplus
servers. Dynamic CPU speed scaling [11] is shown to reduce
the energy usage of datacenters by dynamically adapting
the processing speed of a server to the current workload.
Geographical load balancing [12], [13] is developed to ex-
ploit the spatial diversity of electricity prices to minimize
the energy cost of geographically distributed datacenters
by dynamically routing the user requests to regions with
lower energy prices. Exploiting the temporal diversity of
electricity prices to reduce energy cost by using energy
storage systems or shifting delay-tolerant workload to off-
peak time periods has also been investigated in [14], [15],
[16], [18]. From the supply side, datacenters can purchase
electricity from the retail market with a fixed electricity
price by signing bilateral contracts beforehand [17]. On-site
renewable power generators such as solar panels and/or
wind turbines can also be utilized to reduce energy cost [5],
[18], [19]. However, these work does not consider the cost
saving opportunities of procuring electricity directly from
the wholesale market.

The participation of datacenters in the wholesale electric-
ity market to manage their energy cost has been considered
in a few recent studies [4], [20], [21]. However, all of them
focus on geo-distributed datacenters with the same owner
participating in different wholesale electricity markets and
solve the problem using optimization. In contrast to them,
in this paper we are the first to consider the colocation
datacenter where independent tenants colocated together at
the same place jointly participate in the wholesale electricity
market. Therefore, we need to use game-theoretic methods
to model this multi-agent problem instead of optimization
approaches used in geo-distributed datacenters.

3 BACKGROUND: COOPERATIVE GAME THEORY

In this section, we will briefly introduce the fundamental
concepts of cooperative game theory including the defi-
nition for a cooperative game with transferable cost, the
solution concept (i.e., the core) of a cooperative game, two
types of cooperative games with nonempty core (i.e., the
convex games and balanced games), and widely-used cost
allocation methods (i.e., the Shapley value and nucleolus).

3.1 Cooperative Game with Transferable Cost

In general, a cooperative game is defined by a pair (N , c).
The first element is the set of players N := {1, 2, . . . , N},
indexed by i ∈ N . Players may form different coalitions
S ⊆ N to pay a collective cost. The grand coalition N is the
set of all players. Secondly, c : 2N → R is the cost function
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that assigns a cost to each coalition S ⊆ N . Transferable cost
implies that the total cost represented by a real number can
be divided in any manner among the coalitional members
[22].

3.2 Imputations and the Core

The cost function of a cooperative game is said to be
subadditive if it satisfies the following condition:

c(S) + c(T ) ≥ c(S ∪ T ), ∀S, T ⊆ N , S ∩ T = ∅. (1)

For such cooperative game, it is to the mutual benefit of the
players to form the grand coalition N , since by subadditiv-
ity the amount received, c(N ), is at least as small as the total
amount received by any disjoint set of coalitions they could
form. Next, we focus on how to split this amount among
participating players.

A cost allocation for the coalition S ⊆ N is a vector
π ∈ R

N whose entry πi is the cost dispatched to each player
i in the coalition S (πi = 0, i /∈ S). Further, a cost allocation
π is said to be efficient if

∑

i∈N πi = c(N ), i.e., the total
amount received by the players should be equal to c(N ).
A cost allocation π is said to be individually rational if πi ≤
c({i}), i.e., no player will be expected to receive more cost
than acting individually. A cost allocation π for the grand
coalition is said to be an imputation if it is both efficient and
individually rational. In cooperative game theory [23], [24],
the set of imputations for the game (N , c) is defined as

I =

{

π ∈ R
N :

∑

i∈N

πi = c(N ), πi ≤ c({i}), ∀i ∈ N

}

.

(2)
Next, we introduce the solution concept of a cooperative
game. The core for the game (N , c) is defined as

C =

{

π ∈ R
N :

∑

i∈N

πi = c(N ),
∑

i∈S

πi ≤ c(S), ∀S ⊆ N

}

.

(3)
The core is a set of imputations such that no coalitions can
obtain a cost which is less than the sum of cost assigned by
forming the grand coalition. Obviously, if one can locate a
cost allocation vector that lies in the core, then the grand
coalition is optimal for the cooperative game.

3.3 Convex and Balanced Games

The core is always well-defined, but can be empty. However,
the convex games and balanced games are two types of co-
operative games which guarantee the existence of nonempty
core [25], [26]. A cooperative game is said to be convex if the
cost function satisfies the following condition:

c(S) + c(T ) ≥ c(S ∪ T ) + c(S ∩ T ), ∀S, T ⊆ N . (4)

This implies the cooperative game has a submodular cost
function.

A map ρ : 2N → [0, 1] is said to be balanced if for all
i ∈ N , ∑

S∈2N

ρ(S)1{i ∈ S} = 1, (5)

where 1{·} denotes the indicator function. Thus, the bal-
anced map indicates that the sum of weights ρ(S) assigned

for each coalition including player i will be equal to 1. Then
a cooperative game is said to be balanced if and only if for
any balanced map ρ,

∑

S∈2N

ρ(S)c(S) ≥ c(N ). (6)

3.4 Shapley Value

The Shapley value [27] as the cost allocation method is a
unique mapping ψ that satisfies a series of characteristic
axioms such as efficiency, symmetry, dummy and additivity.
For a cooperative game (N , c) with transferable cost, the
Shapley value ψi(c) that distributes the cost for each player
i ∈ N is defined as

ψi(c) =
∑

S⊆N\{i}

|S|!(N − |S| − 1)!

N !
[c(S ∪ {i})− c(S)] .

(7)
We observe that in (7), the marginal contribution of each
player is represented as c(S ∪ {i}) − c(S) and the coeffi-
cient ahead of the marginal distribution is the probability
that the player i randomly joins the coalition S. Thus, the
Shapley value can be interpreted as the expected marginal
contribution of player i in the grand coalition N when it
joins the coalition S in a random order. It is guaranteed that
the Shapley value lies in the core if the game is convex [25].

3.5 Nucleolus

The nucleolus [28] is another common cost allocation
method. It uniquely exists in a cooperative game and sat-
isfies the efficiency, individually rational, symmetry and
dummy properties [22]. Different from axiomatically de-
signing the cost allocation scheme to ensure fairness as
in the Shapley value, the nucleolus aims at minimizing
the dissatisfaction of the players. The dissatisfaction of a
coalition S given an imputation π is measured by the excess.
The definition of excess is given by

e(π, S) =
∑

i∈S

πi − c(S). (8)

Since the core is defined as the set of imputations such that
∑

i∈S πi ≤ c(S) for all coalitions S ⊆ N , it follows that an
imputation π is in the core if and only if all its excesses
are negative or zero [29]. In order to find the nucleolus,
we first need to locate an imputation that minimizes the
maximum of the excesses e(π, S) over all coalitions S by
solving a linear program. After this is done, one may have
to solve a second linear programming problem to minimize
the next largest excess, and so on. Therefore, in the worst-
case, O(2N ) linear programs need to be solved, which is
computationally expensive.

4 SYSTEM MODEL

Consider a set N := {1, 2, . . . , N} of independent tenants
in a wholesale colocation datacenter where each tenant
pays for their own energy consumption. These tenants
may also be equipped with renewable power generators
such as solar panels and/or wind turbines. As shown in
Fig. 1(a), each tenant can bid its power demand in the
wholesale electricity market, and then pay its electricity bill
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(a) Individual Bidding

(b) Cooperative Bidding

Fig. 1. Individual bidding and cooperative bidding in the wholesale
electricity market.

individually. Note that tenants can bid negative amount to
supply power in the wholesale electricity market. As shown
in Fig. 1(b), we explore the scenario in which individual
tenants form a coalition under the coordination of the colo
operator to collectively bid their aggregated power demand
in the wholesale electricity market as a single entity for cost
saving. Without loss of generality, in the following of the
paper we restrict our analysis to a specific operating hour.

4.1 Datacenter Power Model

Assume each tenant in the colocation datacenter i ∈ N has
Mi homogenous servers whose idle and peak power con-

sumption are P idle
i and P

peak
i , respectively1. Users submit

their requests (e.g., search queries) to tenants, and tenants
process these requests to satisfy the quality-of-service (QoS)
requirement as indicated by the service-level agreement
(SLA). When tenant i keeps mi active servers to process
the arriving user requests, its IT power consumption can be
estimated as [30]

Pi = mi

[

P idle
i + ui(P

peak
i − P idle

i )
]

, (9)

where ui is the average CPU utilization level across all
servers at tenant i.

We adopt a M/GI/1 Processor Sharing (PS) queue to
model the service process at each server [12]. The workload
arrival rate at each tenant i, measured in terms of the

1. Note that a tenant with heterogenous servers can be also viewed as
several tenants, each having homogeneous servers. Therefore, we focus
on the homogenous case in this paper.

average number of arriving user requests per unit time,
is assumed to be λi, where λi ∈ [λmin

i , λmax
i ], and λmin

i

and λmax
i denotes the minimum and maximum workload

arrival rates at each tenant i, respectively. Let µi denote
the service rate at which user requests are processed by a
server at tenant i. Then the average CPU utilization level
in tenant i is calculated as ui = λi/(miµi). Therefore, the
power consumption model (9) can be rewritten as

Pi = miP
idle
i +

λi
µi

(

P
peak
i − P idle

i

)

. (10)

Since each user request has a QoS requirement, tenants
need to turn on enough servers to meet that requirement.
Here we use the average response time as the QoS met-
ric. Based on the M/GI/1/PS queuing model, the average
response time of user requests given mi active servers in
tenant i is represented as

Ti =
1

µi − λi/mi

. (11)

Let Tmax
i denote the maximum average response time of

user requests that can be tolerated at tenant i. Then to ensure
that Ti ≤ Tmax

i , we obtain the following feasible range for
the number of active servers at tenant i:

λi
µi − 1/Tmax

i

≤ mi ≤Mi. (12)

Here, we relax the constraint that requires mi to be inte-
ger given the fact that tenants usually contain thousands
of servers. It is assumed that each tenant turn on the
minimal number of active servers without violating their
QoS requirement using the dynamic capacity provisioning
technique [10], [31]. Therefore the IT power consumption of
each tenant i is

Pi =
λi

µi − 1/Tmax
i

P idle
i +

λi
µi

(

P
peak
i − P idle

i

)

. (13)

In order to incorporate the non-IT (e.g. cooling, light-
ing) power consumption of tenants, we denote the average
power usage effectiveness (PUE) as γi, which is defined as
the ratio of the total power consumption to the IT power
consumption at tenant i. It follows that the total power
consumption Ei of tenant i is given by

Ei = θiλi, (14)

where θi is a constant defined as

θi := γi

(

P idle
i

µi − 1/Tmax
i

+
P

peak
i − P idle

i

µi

)

. (15)

We have Ei ∈ [Emin
i , Emax

i ], where Emin
i and Emax

i denotes
the minimum and maximum power consumption at tenant
i, respectively, which depends on the minimum and maxi-
mum workload arrival rates λmin

i and λmax
i , respectively.

Besides, we assume tenants are equipped with renew-
able power generators such as solar panels and/or wind
turbines, and the renewable power generation is denoted as
Ri for each tenant i, where 0 ≤ Ri ≤ Rmax

i , and Rmax
i is

the installed capacity of the renewable power generators at
tenant i. Then, the net power demand for each tenant i is
given by

Di = Ei −Ri = θiλi −Ri. (16)
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We have Di ∈ [Dmin
i , Dmax

i ], where Dmin
i and Dmax

i denote
the minimum and maximum net power demand at tenant
i, respectively. It follows that Dmin

i = Emin
i − Rmax

i and
Dmax

i = Emax
i .

When tenant i bids in the day-ahead market one day
ahead, the workload arrivals and on-site renewable genera-
tion for the next day are uncertain, and thus the workload
arrival rate λi and renewable power generation Ri can be
modeled as random variables whose probability distribu-
tion can be empirically estimated from historical data. It
follows that the tenant net power demand Di(λi, Ri) as a
function of the workload arrival rate λi and the renewable
power generation Ri is also a random variable.

4.2 Two-Settlement Electricity Market

Consider a wholesale electricity market managed by an ISO
with a two-settlement structure in the region through which
the tenants consume or sell power. It consists of a day-ahead
forward market and a real-time balancing market. In the
day-ahead forward market, participants bid and schedule
power transactions for each hour of the following day before
the gate closure. After that, the ISO clears the market and
calculates the day-ahead market clearing price for each
hour as the intersection between the aggregate supply and
demand curves. For instance, for California ISO, the day-
ahead forward market closes for bids and schedules by 10
AM and clears by 1 PM on the day prior to the operating
day. The schedules cleared in the day-ahead market are
financially binding. Any deviations between the day-ahead
committed schedule and actual power consumption or sup-
ply will be settled in the real-time balancing market during
the operating day. If the actual consumption is more than or
generation is less than the committed schedule, the energy
shortfall will be purchased in the balancing market at the
negative imbalance price, which is usually higher than the
day-ahead price. If the actual consumption is less than or
generation is more than the committed schedule, the energy
surplus will be sold at the positive imbalance price, which
is usually lower than the day-ahead price. Therefore, power
deviations from day-ahead commitments normally result in
penalties for participants.

Specifically, for the considered wholesale electricity mar-
ket, let pd ∈ R

+ be the market clearing price in the day-
ahead forward market, p− ∈ R

+ be the negative imbalance
price for energy shortfall, and p+ ∈ R

+ be the positive
imbalance price for energy surplus. The tenants are assumed
to be price-taking because their energy consumption or sup-
ply are often too small to influence the market. The market
prices (pd, p−, p+) are not known to the tenants at the time
of bidding in the day-ahead market and therefore modeled
as random variables with known expected values denoted
by µd

p, µ−
p , and µ+

p , respectively, which can be estimated
empirically from historical market data. As explained be-
fore, without loss of generality, we assume µ+

p ≤ µd
p ≤ µ−

p .

Moreover, the market prices (pd, p−, p+) are assumed to be
statistically independent of the workload arrival rates and
renewable power generation (λi, Ri, ∀i).

Suppose that each tenant i ∈ N bids a power consump-
tion or supply amount Qi in the day-ahead market. Note
that in our problem formulation, we focus on a specific

operating hour. With the above models and assumptions, it
follows that the expected cost of tenant i from participating
in the market individually can be calculated as

Φi = µd
pQi + µ−

p E[(Di −Qi)
+]− µ+

p E[(Qi −Di)
+], (17)

where (x)+ := max(x, 0). Note that there are two cases for
tenant i in the market in (17):

• tenant i behaves as a consumer, i.e., Qi ≥ 0. µd
pQi

denotes the day-ahead trading cost, µ−
p E[(Di−Qi)

+]
denotes the demand shortfall penalty, and µ+

p E[(Qi−
Di)

+] denotes the demand surplus profit.
• tenant i behaves as a producer, i.e., Qi < 0. µd

pQi de-
notes the day-ahead trading profit, µ−

p E[(Di −Qi)
+]

denotes the supply shortfall penalty, and µ+
p E[(Qi −

Di)
+] denotes the supply surplus profit.

Note that if Φi < 0, then |Φi| represents the expected profit
for tenant i when it bids in the market individually.

5 COALITIONAL TENANT BIDDING

In this section, we start by introducing the tenant aggre-
gation model where multiple tenants can form a coalition
to bid in the day-ahead market collectively as shown in
Fig. 1(b). Then, it can be verified that by bidding net power
demand aggregately in the day-ahead market, the total elec-
tricity bill can be effectively reduced based on the fact that
tenant aggregation can reduce the uncertainty of the total
workload arrivals, renewable generation and associated net
power demand.

5.1 Tenant Aggregation as a Cooperative Game

Tenants can form different coalitions and bid collectively in
the day-ahead market under the coordination of the colo
operator. Any coalition S ⊆ N represents an agreement
among the tenantstenant in S to act as a single entity in
the market. The aggregated tenant net power demand of a
coalition S ⊆ N is specified by

DS =
∑

i∈S

Di. (18)

Further, we denote the cumulative distribution function
(CDF) of DS as

FS(e) = Pr(DS ≤ e). (19)

The corresponding quantile function is given by

F−1
S (ε) = inf {e ∈ [Dmin

S , Dmax
S ] : ε ≤ FS(e)}, (20)

where Dmin
S and Dmax

S are the minimum and maximum
aggregated net power demand for coalition S. Given the
minimum and maximum aggregated power consumption
and maximum aggregated renewable generation for coali-
tion S denoted as Emin

S , Emax
S and Rmax

S , respectively, it
follows that Dmin

S = Emin
S −Rmax

S and Dmax
S = Emax

S .
Next, we use cooperative game theory [32] to model

this cooperation process as a cooperative game (N , c) with
transferable cost since it is under a multi-agent scenario
where each tenant tends to minimize its own net cost. Note
that minimizing the negative cost is equivalent to maximize
the profit. In our model, the set of tenants N is the set of
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players in the cooperative game. Moreover, we assume each
tenant always seeks to minimize its own electricity cost, and
then the cost function c(S) associated with every coalition
S ⊆ N is represented as its minimum expected energy cost
calculated as

ΦS = µd
pQS+µ

−
p E[(DS−QS)

+]−µ+
p E[(QS−DS)

+], (21)

c(S) = min
QS∈[Dmin

S
,Dmax

S
]
ΦS , (22)

where QS is the bidding amount of any coalition S in the
day-ahead market. We assume the market prices for the
coalitional bid is the same as that of individual bids. This
assumption is acceptable since the tenants are assumed to
be relatively small compared to all other prosumers par-
ticipating in the electricity market so that their operations
have little impact on the cleared prices of the day-head
market or real-time market [33]. Solving (22) as a news-
vendor problem [34], [35], the optimal day-ahead bid and
expected cost are given in the following theorem:

Theorem 1. The optimal day-ahead bid of any coalition S is given
by

Q∗
S = F−1

S (ε∗), where ε∗ =
µ−
p − µd

p

µ−
p − µ+

p

. (23)

The optimal expected cost is given by

c(S) = µ+
p

∫ ε∗

0
F−1
S (θ) dθ + µ−

p

∫ 1

ε∗
F−1
S (θ) dθ. (24)

Proof: We first rewrite (22) as below:

c(S) = min
QS

µd
pQS + µ−

p

∫ Dmax
S

QS

(u−QS)fS(u) du

− µ+
p

∫ QS

Dmin
S

(QS − u)fS(u) du, (25)

where fS(·) is the corresponding probability density func-
tion (PDF) of the CDF as defined in (19). Then by applying
the first order optimality condition associated with Leibniz
integral rule, we have

µd
p − µ−

p (1− FS(QS))− µ+
p FS(QS) = 0, (26)

Q∗
S = F−1

S (ε∗), where ε∗ =
µ−
p − µd

p

µ−
p − µ+

p

. (27)

The optimal expected cost is given by substituting Q∗
S into

(25):

c(S) = µd
pQ

∗
S + µ−

p

∫ Dmax
S

Q∗
S

(u−Q∗
S)fS(u) du

− µ+
p

∫ Q∗
S

Dmin
S

(Q∗
S − u)fS(u) du

= µd
pQ

∗
S + µ−

p

∫ 1

ε∗
(F−1

S (θ) −Q∗
S) dθ

− µ+
p

∫ ε∗

0
(Q∗

S − F−1
S (θ)) dθ

= Q∗
S (µd

p − µ−
p + ε∗(µ−

p − µ+
p ))

︸ ︷︷ ︸

=0

+ µ+
p

∫ ε∗

0
F−1
S (θ) dθ + µ−

p

∫ 1

ε∗
F−1
S (θ) dθ. (28)

5.2 The Benefits of Aggregation

Intuitively, no group of tenants can do worse by joining a
coalition than by acting noncooperatively since aggregation
can reduce uncertainty. We will prove this by the following
theorem:

Theorem 2. Given an arbitrary coalition S ⊆ N , let
{Q1, Q2, . . . , Q|S|} be a set of |S| individual day-ahead bids.
For QS =

∑

i∈S Qi we have:

ΦS(QS) ≤
∑

i∈S

Φi(Qi). (29)

Proof: We introduce an ancillary random variable Xi

and rewrite (21) in terms of Xi as follows:

Xi := Di −Qi, (30)

ΦS(QS) = µd
pQS + µ−

p E
[(∑

i∈S

Xi

)+]

− µ+
p E
[(
−
∑

i∈S

Xi

)+]
, (31)

∑

i∈S

Φi(Qi) = µd
p

∑

i∈S

Qi + µ−
p E
[∑

i∈S

(
Xi

)+]

− µ+
p E
[∑

i∈S

(
−Xi

)+]
. (32)

By adopting the equivalent forms of (x)+ := (x)+ :=

max(x, 0) = x+|x|
2 , we have

ΦS(QS)−
∑

i∈S

Φi(Qi) =

µ−
p E

[∑

i∈S Xi +
∣
∣
∑

i∈S Xi

∣
∣

2
−
∑

i∈S

Xi + |Xi|

2

]

− µ+
p E

[∣
∣
∑

i∈S Xi

∣
∣−

∑

i∈S Xi

2
−
∑

i∈S

|Xi| −Xi

2

]

=

(

µ−
p − µ+

p

2

)

E
[(∣
∣
∑

i∈S

Xi

∣
∣−

∑

i∈S

|Xi|
)]

≤ 0. (33)

The above inequality holds according to the triangle in-
equality, i.e.,

∣
∣
∑

i∈S Xi

∣
∣ ≤

∑

i∈S |Xi| and also by assump-
tion, we have µ−

p ≥ µ+
p . Therefore, ΦS(QS) ≤

∑

i∈S Φi(Qi).

It is straightforward to see that the expected cost by
participating in the market collectively is less than the sum
of that by participating in the market individually. That is,
the tenants save the expected cost of

∑

i∈S Φi(Qi)−ΦS(QS)
collectively via aggregation. Further, we establish some
properties of the cost function associated with every coali-
tion.

Lemma 1. The optimal expected cost c(S) of any coalition S has
following properties:

1) Positive homogeneity: For any scalar β ≥ 0, c(βS) =
βc(S).

2) Subadditivity: For any two disjoint coalitions S1 and S2,
if coalition S1 ∪ S2 forms, then c(S1 ∪ S2) ≤ c(S1) +
c(S2).

Proof: First we prove the positive homogeneity. The
CDF of the positively scaled DS is denoted as

FβS(u) = Pr(βDS ≤ u) = FβS

(
u

β

)

.
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It follows that the quantile function of FβS(u) is given by

F−1
βS (ε∗) = βF−1

S (ε∗).

Using the results from Theorem 1, we can prove the positive
homogeneity as

c(βS) = µ+
p

∫ ε∗

0
F−1
βS (θ) dθ + µ−

p

∫ 1

ε∗
F−1
βS (θ) dθ

= β

(

µ+
p

∫ ε∗

0
F−1
S (θ) dθ + µ−

p

∫ 1

ε∗
F−1
S (θ) dθ

)

= βc(S). (34)

Next we prove the subadditivity as

c(S1) + c(S2) = min
QS1

ΦS1
(QS1

) + min
QS2

ΦS2
(QS2

)

= ΦS1
(Q∗

S1
) + ΦS2

(Q∗
S2
), (35)

where Q∗
S1

and Q∗
S2

are the optimal day-ahead bids of
their respective minimization problems. It follows from
Theorem 2 that

ΦS1
(Q∗

S1
) + ΦS2

(Q∗
S2
) ≥ ΦS1∪S2

(Q∗
S1

+Q∗
S2
)

≥ ΦS1∪S2
(Q∗

S1∪S2
) = c(S1 ∪ S2),

where Q∗
S1∪S2

is the optimal solution of the expected cost
minimization problem under coalition S1 ∪S2, while Q∗

S1
+

Q∗
S1

is a feasible solution of the minimization problem, then
it follows that c(S1 ∪ S2) ≤ c(S1) + c(S2).

From positive homogeneity, we observe that when the
aggregated net power demand is scaled, the corresponding
value of the optimal expected cost will also be scaled in
the same proportion. From subadditivity, we observe that
for rational tenants who always try to minimize their cost,
they will form a large-size coalition to benefit more from the
aggregation. It is straightforward to see in our game that
all the tenants will form the grand coalition N in order to
minimize their total expected cost.

6 COST ALLOCATION MECHANISM

In the section, we focus on how to find a cost allocation
vector π as defined in Section 3.2 to split the total expected
cost to each tenant in the grand coalition. First, we verify
that our game is nonconvex, and hence the Shapley value is
not applicable to locate the core of our game. Next, we show
that the core of our cooperative game exists and is nonempty
by proving it is a balanced game. Moreover, we propose a
cost allocation scheme based on the marginal contribution
of each tenant to the total cost in the grand coalition. Last,
we discuss how to allocate the cost to each participating
tenants after the realizations of net power demand and
market prices.

6.1 Existence of the Nonempty Core

As shown in Section 3, both the convexity and balanced-
ness can guarantee the core of a cooperative game to be
nonempty. First, we show that our cooperative bidding
game is nonconvex by the following theorem:

Theorem 3. Our cooperative bidding game is nonconvex.

Proof: We consider a cooperative bidding game in-
volving three tenants, indexed by i ∈ {1, 2, 3}, and denote
their net power demand as A1, A2 and A3, respectively. We
assume the marginal distribution of A1 and A2 are given by

Ai =

{

2, w.p. 0.5

4, w.p. 0.5
∀i = 1, 2.

Further, assume A3 is perfectly positively correlated to A2,
i.e., A3 = A2. We set the expected day-ahead, negative im-
balance and positive imbalance prices as µd

p = 0.9, µ−
p = 1.4

and µ+
p = 0.4, respectively. Then based on Theorem 1, we

have:

ε∗ =
1.4− 0.9

1.4− 0.4
= 0.5,

c({1}) = c({2}) = c({3}) = 3.2,

c({1, 2}) = c({1, 3}) = 5.9,

c({2, 3}) = 6.4,

c({1, 2, 3}) = 9.1.

Here, we choose two coalitions as S = {1, 2} and T =
{1, 3}, and then from the above example, we have:

c({1, 2}) + c({1, 3}) = 10.8 < c({1, 2, 3}) + c({1}) = 12.3,

which violates the definition of convex game given in (4).
Therefore, our cooperative game is nonconvex.

Since the convexity of a cooperative game is a stronger
condition compared to the balancedness, we prove the exis-
tence of the core in terms of balancedness by the following
theorem:

Theorem 4. The cooperative game (N , c) for tenant aggregation
is balanced and has a nonempty core.

Proof: Given an arbitrary balanced map ρ : 2N →
[0, 1], by following the concept of the balanced game, we
have

∑

S∈2N

ρ(S)c(S) =
∑

S∈2N

c(ρ(S)S) (36)

≥ c




∑

S∈2N

ρ(S)S



 (37)

= c




∑

S∈2N

ρ(S)

(
⋃

i∈N

1{i ∈ S}i

)



= c




⋃

i∈N




∑

S∈2N

ρ(S)1{i ∈ S}



 i



 (38)

= c

(
⋃

i∈N

i

)

= c(N ),

where (36) is because of the positive homogeneity of c(S),
(37) is because of the subadditivity of c(S), and (38) is
derived by the definition of balanced map ρ. Therefore, the
cooperative game (N , c) is balanced and has a nonempty
core.
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6.2 Marginal Cost Allocation

Two prominent cost allocation schemes are described in
Section 3. However, both of them are not applicable to solve
our cooperative game. The Shapley value can be guaranteed
to lie in the core if the cooperative game is convex. However,
as shown through a counterexample in Theorem 3, our
game is not convex. Therefore, the Shapley value does not
necessarily belong to the core and hence is not applicable
to allocate cost in our game. The nucleolus uniquely exists
and can be used as a cost allocation scheme in our game.
However, as mentioned before, in the worst-case scenario,
O(2N ) linear programs need to be solved in order to get the
cost allocation vector, which is computationally expensive.

Here, we propose a cost allocation scheme based on the
marginal contribution of each tenant to the total expected
cost when participating in the grand coalition and prove
the resulting cost allocation vector is in the core. We define
an aggregation level vector α = [α1, . . . , αN ]T , where each
element 0 ≤ αi ≤ 1 represents the fraction of tenant
net power demand Di that participates in the aggregative
power procurement. Thus, the weighted net power demand
of the aggregation with the aggregation level vector α is
denoted as

Dα,N =
N∑

i=1

αiDi, (39)

whose quantile function is represented by F−1
α,N (ε) and

defined similar to (20). Then by applying Theorem 1, we
can obtain the optimal expected cost of the weighted net
power demand as

cα(N ) = µ+
p

∫ ε∗

0
F−1
α,N (θ) dθ + µ−

p

∫ 1

ε∗
F−1
α,N (θ) dθ. (40)

The positive homogeneity and subadditivity proved in
Lemma 1 can be easily extended to the case where we con-
sider the weighted optimal expected cost cα(N ). Further,
we show another property as follows:

Lemma 2. The weighted optimal expected cost cα(N ) of any
coalition S is nonincreasing over α, i.e., for any two aggregation
level vectors, if α � α′2, then cα(N ) ≤ cα′(N ).

Proof: Given two aggregation level vectors α and α′

where α � α′, then for any element in the vector α − α′,
we have 0 ≤ αi − α′

i ≤ 1, ∀i ∈ N . Using the subadditivity
property, we have

cα(N ) ≤ cα′(N ) + cα−α
′(N ), (41)

which indicates the nonincreasing property.

According to Lemma 2, the optimal expected cost will be
achieved when α = 1, where 1 ∈ R

N×1 is an all-one vector.
Then it follows that cα(N )|α=1 = c(N ).

To distribute the total expected cost c(N ) among the
tenants in the grand coalition, we compute the expected cost
for each tenant i as

πi =
∂cα(N )

∂αi

∣
∣
∣
α=1

, ∀i ∈ N . (42)

2. The operator � represents component-wise vector comparison.

Indeed, πi can be decomposed as the multiplication of two
terms:

πi =
∂cα(N )

∂Dα,N

∣
∣
∣
α=1

×
∂Dα,N

∂αi

∣
∣
∣
α=1

, ∀i ∈ N , (43)

where the second term is exactly the net power demand
Di of each tenant. On the other hand, the first term is the
partial derivative of the weighted optimal expected cost
with respect to the weighted net power demand and then
evaluating at the full aggregation level, i.e., α = 1, which
can be considered as the marginal cost assigned to each
tenant. Therefore, the multiplication of the marginal cost
and net power demand gives the distributed cost to each
tenant. Further, we prove that the cost allocation vector
π = [π1, . . . , πN ]T given in (42) lies in the core as shown
in following theorem:

Theorem 5. The resulting cost allocation vector of the proposed
cost allocation scheme is fair and lies in the core of our cooperative
game.

Proof: Our proof is similar to [36], [37] which focus
on different aggregation problems. Here we only give a
sketch of the proof process. The basic idea is that we could
also use the non-cooperative game theory to model the
same problem by allowing power exchange within tenants
as well, and our proposed allocation method can find the
Nash equilibrium of the formulated noncooperative game.
Since the core of our cooperative game can be shown to
be the same as the Nash equilibrium of the corresponding
noncooperative game, our proposed cost allocation scheme
is guaranteed to find the core of the cooperative game.
Details about the proof process can be found in [36], [37].

The most significant advantage of exploiting this method
is its low computational complexity. Compared to using the
nucleolus, we only need to calculate O(N) equations.

6.3 Realized Cost Allocation

Since the cost function (22) of our cooperative bidding
game is defined in terms of optimal expected cost, any cost
allocation vector lying in the core represents the average cost
each participating tenant should pay. However, the realized
cost will vary day to day due to the inherent uncertainty of
net power demand and market prices. There might be some
days such that the participating tenants need to pay more by
using our proposed cost allocation method than the realized
cost. If overpayment keeps occurring, the coalitional tenants
may choose to deviate from the grand coalition, which will
break the stability of our game. Therefore, it is necessary to
design a way to allocate the realized cost such that the pay-
ment to coalition members, averaged over the participating
days, approaches the allocated cost in expectation.

Assume the set of operating days {1, 2, . . . ,K} is in-
dexed by k. After realizations of net power demand of
tenants and market prices at a particular hour on day k, we
let Dk

S and (pdk, p
−
k , p

+
k ) denote the aggregated net power

demand for coalition S and market prices, respectively.
Further, we assume Dk

S and (pdk, p
−
k , p

+
k ) are independent

and identically distributed (i.i.d.) over operating days. Then
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according to (21), we can calculate the realized cost for any
coalition S ⊆ N as

Φk
S = pdkQ

∗
S + p−k (D

k
S −Q∗

S)
+ − p+k (Q

∗
S −Dk

S)
+, (44)

where the optimal day-ahead bid Q∗
S is given by Theorem 1.

Then, we denote the realized cost allocation vector at a
particular hour on day k as ξk = [ξk1 , . . . , ξ

k
N ]T where each

entry ξki ∈ R is the realized cost dispatched to tenant i at
a particular hour on day k. Given the realization of cost
Φk

N for grand coalition N at a particular hour on day k
and the cost allocation vector π∗ by using our marginal cost
allocation method, we propose a proportional allocation to
distribute the realized cost to each participating tenant as
follows:

ξki =
π∗
i

∑N
j=1 π

∗
j

Φk
N , ∀i ∈ N . (45)

The above proportional cost allocation method satisfies
the following two properties:

• Realized efficiency:
∑N

i=1 ξ
k
i = Φk

N . The total re-
alized cost at a particular hour on day k paid by
all the players should be equal to Φk

N . Our pro-
posed method satisfies the realized efficiency since
∑N

i=1 ξ
k
i =

∑N
i=1 π∗

i∑
N
j=1 π∗

j

Φk
N = Φk

N .

• Consistency: 1
K

∑K
k=1 ξ

k
i

a.s.
−−→ π∗

i . For player i, the
realized cost allocation ξki at a particular hour av-
eraged over K operating days will approach the ex-
pected cost allocation π∗

i almost surely. Our proposed
method satisfies the consistency due to the strong
law of large numbers since the average of the results
obtained from a large number of trials should be
close to the expected value.

Due to the above two properties, our proposed proportional
cost allocation method can ensure that in the long run, the
average of the realized cost allocation will approach the
expected cost allocation, which can prevent tenants from
leaving the coalition.

7 NUMERICAL EXPERIMENTS

In this section, we first introduce our simulation setup and
then conduct trace-driven simulations to show the benefits
of tenant aggregation in trading power in the wholesale
electricity market and the effectiveness of our proposed cost
allocation scheme.

7.1 Simulation Setup

In this following sections, we will introduce the simulation
setup for tenants, workloads, renewable energy and electric-
ity prices, respectively. All our simulations are conducted
on a desktop computer with an Intel Core i7-4790 3.60GHz
CPU and 8GB RAM using MATLAB R2016a.

7.1.1 Colocation Datacenter Descriptions

A colocation datacenter with four independent tenants
N = {1, 2, 3, 4} is considered in our simulations. The total
number of servers for each tenant is 5,000, 7,500, 10,000 and
12,500, respectively. Assume the idle power and peak power
of each server is 150 W and 250 W, respectively. Besides, the

TABLE 1
Simulation Parameters

Mi µi (requests/s) Tmax

i
(ms)

Tenant 1 5000 200 100
Tenant 2 7500 250 80
Tenant 3 10000 300 60
Tenant 4 12500 350 40
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Fig. 2. CDFs of the normalized tenant workload arrival rates and power
consumption at hour 5.

average PUEs of all the tenants are set to 1.5. The average
service rate of a server in each tenant is set to be 200, 250, 300
and 350 requests per second, respectively. The maximum
average restenantponse time for each tenant is set to be
100, 80, 60 and 40 ms, respectively. The above simulation
parameters are summarized in Table 1.

7.1.2 Workload Descriptions

The real-world dataset we use to simulate the workloads
is from the Google cluster trace [38]. The selected dataset
includes workload information over 29 days (i.e., 696 hours)
during May 2011 for a cluster of 12,500 severs. We repeat the
original data and extend it to 1008-hour workloads (i.e., 42
days). Then, we randomly choose 4 different 720-hour (i.e.,
30 days) portions from the extended dataset as our tenant
workloads. Fig. 2(a) shows the CDFs of the normalized
tenant workload arrival rates for four tenants at hour 5.
Then we can estimate the power consumption of each tenant
according to (14). The CDFs of the power consumption for
four tenants at hour 5 are depicted in Fig. 2(b).

7.1.3 Renewable Energy Descriptions

We consider each tenant is equipped with on-site wind
turbines. The real-world dataset we use to simulate the wind
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Fig. 3. Normalized wind turbine power curve.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Nomalized Wind Power

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Tenant 1
Tenant 2
Tenant 3
Tenant 4

Fig. 4. CDFs of the normalized wind power generation at hour 5.

power generation is from the NREL National Wind Technol-
ogy Center (M2) [39]. We select the dataset for wind speed at
80 meters from January 2016 to June 2016, and then estimate
the corresponding wind power output as shown in Fig. 3,
where the cut-in speed, rated output speed and cut-out
speed are set to 3.5 m/s, 14 m/s and 25 m/s, respectively.
After that, we randomly choose 4 different 720-hour (i.e., 30
days) portions from the converted wind power output data
(6 months) as our tenant renewable power generation. The
CDFs of the normalized wind power output for four tenants
at hour 5 are shown in Fig. 4. Then according to (16), we can
obtain the CDFs of net power demand for four tenants at
hour 5 which is shown in Fig. 5.

7.1.4 Electricity Price Descriptions

In our simulations, tenants can trade power either indi-
vidually or cooperatively by forming the grand coalition.
Moreover, we assume tenants bid their net power demand
in the day-ahead market for each hour in the following
operating day. By default, the expected day-ahead price µd

p

is set to be 5 cents/kWh, the expected negative imbalance
price µ−

p is set to be 5.83 cents/kWh, and the expected
positive imbalance price µ+

p is set to be 2.5 cents/kWh in
the simulations.

7.2 Experimental Results

In this section, we simulate and analyze how tenants can
benefit from forming the grand coalition to save their elec-
tricity cost when trading power in the wholesale electricity
market. Here, we consider the case where each tenant bids
its net power demand individually by minimizing its ex-
pected energy cost as the baseline scenario for comparison.
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Fig. 5. CDFs of the tenant net power demand at hour 5.
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Fig. 6. Day-ahead bidding level comparison over 24 hours.

7.2.1 Benefits of Aggregation

We first observe the benefits of coalitional bidding in the
wholesale electricity market. Based on Theorem 1, we can
calculate the optimal day-ahead bid Q∗

S of any coalition S.
Fig. 6 shows the resulting optimal day-ahead bidding level
of our proposed method and the sum of optimal individ-
ual bidding level in the baseline over 24 hours. It can be
observed that the day-ahead bidding level at several hours
are negative under baseline scenario, which means at least
one tenant behaves as producer by bidding negative power
amount in the day-ahead market. Fig. 7 shows the energy
cost comparison of our proposed approach and the baseline.
The result of the baseline scenario is obtained by adding up
the optimal expected electricity cost of each tenant when
they bid in the day-ahead market individually, while the
result of the proposed method is obtained by letting tenants
form the grand coalition to bid in the day-ahead market
cooperatively. It is shown in Fig. 7 that the total electric-
ity cost is effectively reduced by cooperative day-ahead
bidding, which validates the subadditivity property of our
cooperative game given in Lemma 1. The average hourly
cost saving is around 18.03% under the current setting.

7.2.2 Cost Allocation

Next we focus on how to distribute the total energy cost
after coalitional bidding among each participating tenant
using our proposed cost allocation method. We split the
total expected cost based on the marginal contribution of
each tenant in the grand coalition by applying the proposed
cost allocation scheme in Section 6.2. Fig. 8 presents the
cost allocation to each tenant at hour 5. The height of blue
bar and yellow bar denote the individual bidding cost and
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Fig. 7. Total expected cost comparison over 24 hours.
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Fig. 8. Cost allocation of each tenant at hour 5 under the current setting.

allocated cost of each tenant after coalitional bidding in
the day-ahead market, respectively. It can be observed that
tenant 2 behaves as a producer since its individual bidding
cost is negative. In order to quantify the aggregation benefits
of our proposed method, we define the cost saving percentage
as the ratio of cost saving and individual bidding cost. The
cost saving percentage of each tenant over 24 hours in a
day is given in Fig. 9. It can be observed that our proposed
allocation method can always ensure positive cost reduction
for each tenant and the cost saving amount of each tenant is
different, depending on its contribution to the aggregation
benefits.

Table 2 presents the noncooperative and coalitional elec-
tricity cost of each coalition at hour 5. The last column gives
the corresponding excesses e(π, S) defined in (8). From
row 1 to row 14, the calculated excesses are all negative
which satisfies the condition of subgroup rationality, i.e.,
∑

i∈S πi ≤ c(S). The last row indicates that our cost allo-
cation is efficient since

∑

i∈N πi = c(N ). It verifies that our
proposed cost allocation lies in the core of the cooperative
game since both subgroup rationality and efficiency condi-
tions are satisfied.

7.2.3 Impact of Percentile

Now we present how market prices affect the cost saving
and the day-ahead bid of each tenant when they form
the grand coalition. According to Theorem 1, the optimal
day-ahead bid depends on the quantile function where

the percentile ε∗ =
µ−
p −µd

p

µ
−
p −µ

+
p

, which is decided by expected

electricity prices µd
p, µ−

p and µ+
p . In order to obtain dif-

ferent percentiles, we fix the expected day-ahead price µd
p

and expected positive imbalance price µ+
p as constants and
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Fig. 9. Individual cost saving percentage of each tenant after coalitional
day-ahead bidding over 24 hours.

TABLE 2
Cost comparison for all coalitions of four tenants at hour 5

S c(S)
∑

i∈S
πi

∑
i∈S

πi − c(S)

1 {1} 177.18 161.21 −15.97
2 {2} −6.24 −30.72 −24.48
3 {3} 176.09 128.99 −47.10
4 {4} 104.21 80.94 −23.27
5 {1, 2} 138.24 130.49 −7.75
6 {1, 3} 321.56 290.20 −31.36
7 {1, 4} 263.08 242.15 −20.93
8 {2, 3} 121.70 98.27 −23.43
9 {2, 4} 56.70 50.22 −6.48

10 {3, 4} 252.68 209.93 −42.75
11 {1, 2, 3} 270.45 259.48 −10.97
12 {1, 2, 4} 211.28 202.43 −8.85
13 {1, 3, 4} 407.32 371.14 −36.18
14 {2, 3, 4} 188.49 179.21 −9.28
15 {1, 2, 3, 4} 340.42 340.42 0

adjust the expected negative imbalance price µ−
p to different

values.

Fig. 10 depicts the cost saving percentage of each tenant
at hour 5 when the percentile ε∗ is 0.25, 0.50 and 0.75,
respectively. Further, the percentage of the average cost
saving of each tenant over 24 hours is listed in Table 3.
We can observe that for tenant 1, 3 and 4, the percentage
of the average cost saving increases when the percentile
ε∗ increases. This is intuitive since we have less chance to
reduce cost through aggregation when the penalty price is
lower. Indeed, when the expected negative penalty price is
the same as the expected day-ahead electricity price, there
is no need for aggregation since one could always buy
any shortfall from the real-time market without penalty.
However for tenant 2, the percentage of the average cost
saving decreases when the percentile ε∗ increases. From the
net power demand curve of tenant 2, given the percentile ε∗,
we can calculate the optimal day-ahead bidding amount.
When ε∗ increases, the optimal bidding amount changes
from negative to positive, and therefore tenant 2 changes
from produce to consumer with decreased cost saving per-
centage.

Fig. 11 shows the changes of day-ahead bidding level
of the baseline and the proposed method under different
percentiles at hour 5. It can be observed that under both
cases, the day-ahead bidding level decreases as the per-
centile increases. The reason is that when the percentile is
near 0, tenants can buy any shortfall in the real-time market
without penalty and therefore tend to bid less. On the other
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Fig. 10. Cost saving percentage of each tenant at hour 5 when the percentile ε∗ is 0.25, 0.50 and 0.75, respectively.

TABLE 3
The percentage of the average cost saving of each tenant under

different percentiles

ε∗ = 0.25 ε∗ = 0.50 ε∗ = 0.75
Tenant 1 8.90% 12.60% 14.66%
Tenant 2 49.13% 31.35% 23.14%
Tenant 3 10.34% 12.78% 14.82%
Tenant 4 18.63% 22.45% 25.62%
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Fig. 11. Day-ahead bidding level comparison under percentiles ε∗ from
0 to 1 at hour 5.

hand, when the percentile is approaching 1, tenants behave
more conservatively since the expected negative imbalance
price is much higher than the expected day-ahead price. In
order to avoid high penalty for energy shortfall, they tend
to bid more power amount to lower the possible mismatch
between committed power supply in the day-ahead market
and realized net power demand in the real-time market.
Moreover, the change rate of bidding level of our proposed
method with respect to the percentile is smaller than that of
the baseline. This is due to the fact that the proposed method
has a smaller net power demand uncertainty and therefore
is less sensitive to the percentile.

8 CONCLUSION

In this paper, we have proposed a new approach to min-
imize the electricity cost for tenants in colocation datacen-
ters participating in the wholesale electricity market. The
electricity cost can be effectively reduced by bidding in the
day-ahead market collectively since aggregation can reduce
the uncertainty of net power demand. We model this ag-
gregation process as a cooperative game and present a cost
allocation mechanism based on the marginal contribution of

each tenant to the total expected cost to distribute the opti-
mal expected cost to each tenant within the grand coalition.
Moveover, we have discussed how to share the coalitional
cost after the realizations of net power demand and market
prices. Our proposed proportional cost allocation method
can ensure the stability of our cooperative bidding game
after realizations in the long run. Finally, simulations based
on real-world traces verify the effectiveness of our proposed
cost saving method.
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