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(a) In-Re (b) In-Im

(c) Out-Re (d) Out-Im

Fig. 6: The filters b4,4,in,+X and b4,4,out,+X . (a) Inner layer filter
b4,4,in,+X : Real part. (b) b4,4,in,+X : Imaginary part. (c) Outer
layer filter b4,4,out,+X : Real part. (d) b4,4,out,+X : Imaginary part.

Λk is the lattice k + [−L,L]2 that centered at position k for
some integer L ≥ 0. The threshold tw : Λ → [0,∞] is then
defined by tw(k) = σ2

σw(k) , k ∈ Λ. The local-soft thresholding
w̃b := ηlstw(wb) applying to wb is then given by w̃b(k) :=

ηsofttw(k)(wb(k)), k ∈ Λ, where ηsoftt (x) = max{|x|− t, 0} x|x| is
the soft-thresholding operator. The threshold coefficient w̃b is
then renomralized back to w̃ := ‖b‖2 · ηlstw(wb).

For image denoising, we tested 4 images: Lena, Barbara,
Boat, and Fingerprint (see Fig. 7(a)–(d)). Gaussian noise
N(0, σ) with σ = 5, 10, 30, 50, 80 are added to each image.
We apply the forward transform to the image and obtain a set
of output filtered coefficients, which are then thresholded using
the local soft-thresholding technique with the convolution
window filter of size 9×9. Backward transform is then applied
to the thresholded filtered coefficients.

We compare our results to several state-of-the-art frame-
based denoised methods including The DAS-1 in [32],
TP-CTF6 and TP-CTF↓6 in [18], DT-CWT in [29], DNST
in [26], and NSCT in [6]. DAS-1 decomposes the image to
J = 5 levels with 18 directional filters in the finest level j = 4,
10 directional filters in levels j = 3, 2, 1, and 6 directional
filters in level j = 0. Its redundancy rate is about 6.16. The
DAS-1 uses local soft-thresholding technique as well with
convolution window filter of size 11 × 11. The TP-CTF6

and TP-CTF↓6 decompose the image to J = 5 levels with
each level having 14 directional filters. They use the bivariate
shrinkage thresholding technique and their redundancy rates
are 10.67 and 2.67, respectively. The DT-CWT decomposes

(a) Lena (b) Barbara (c) Boat (d) Fingerprint

(e) Text1 (f) Text2 (g) M50 (h) M80

Fig. 7: (a)–(d) Images. (e)–(h) Masks.

the image to J = 6 levels with each level having 6 directional
filters. It uses the bivariate shrinkage thresholding technique
and its redundancy rate is 4. The DNST decomposes the image
to J = 4 levels. 16 shear directions are used for finest levels
j = 3 and j = 2 while 8 shear directions are used for the
other two levels j = 1, 0. The redundancy of DNST is 49.
The NSCT uses 4, 8, 8, 16, 16 directions from the coarser to
finer levels. Its redundancy rate is 53. DNST and NSCT both
use hard thresholding.

The comparison results are reported in Table I in terms of
PSNR (unit dB), where PSNR(v, ṽ) = 10 log10

2552

MSE(v,ṽ) with
MSE(v, ṽ) = 1

#Λ

∑
k∈Λ |v(k)− ṽ(k)|2 for input image v and

reconstruction image ṽ on a lattice Λ.

σ DAS-2 DAS-1 TP-CTF↓6 TP-CTF6 DT-CWT DNST NSCT
(6.39) (6.16) (2.67) (10.67) (4) (49) (53)

512 × 512 Lena
5 38.36 38.14(0.22) 38.16(0.20) 38.37(-0.01) 38.25(0.11) 38.01(0.35) 37.71(0.65)

10 35.39 35.12(0.27) 35.22(0.17) 35.48(-0.09) 35.19(0.2) 35.35(0.04) 34.92(0.47)
30 30.62 30.61(0.01) 30.38(0.24) 30.80(-0.18) 30.50(0.12) 30.68(-0.06) 30.32(0.3)
50 28.30 28.49(-0.19) 28.11(0.19) 28.54(-0.24) 28.22(0.08) 28.21(0.09) 28.02(0.28)
80 26.20 26.54(-0.34) 26.11(0.39) 26.47(-0.27) 26.15(0.05) 25.78(0.42) 25.80(0.4)

512 × 512 Barbara
5 37.77 37.32(0.45) 37.63(0.14) 37.84(-0.07) 37.37(0.4) 37.17(0.6) 36.96(0.81)

10 34.14 33.64(0.5) 33.97(0.17) 34.18(-0.04) 33.54(0.6) 33.62(0.52) 33.35(0.79)
30 28.73 28.33(0.4) 28.33(0.4) 28.38(0.35) 27.89(0.84) 27.97(0.76) 27.28(1.45)
50 26.29 26.01(0.28) 25.73(0.56) 25.71(0.58) 25.36(0.93) 25.31(0.98) 24.57(1.72)
80 24.10 23.99(0.11) 23.51(0.59) 23.53(0.57) 23.27(0.83) 22.96(1.14) 22.65(1.45)

512 × 512 Boat
5 36.93 36.63(0.30) 36.74(0.19) 36.92(0.01) 36.73(0.20) 36.04(0.89) 35.79(1.14)

10 33.27 33.01(0.26) 33.10(0.17) 33.41(-0.14) 33.19(0.08) 33.15(0.12) 32.65(0.62)
30 28.25 28.31(-0.06) 27.99(0.26) 28.44(-0.19) 28.23(0.03) 28.44(-0.19) 27.95(0.30)
50 26.08 26.24(-0.16) 25.79(0.29) 26.25(-0.17) 26.06(0.02) 26.23(-0.15) 25.94(0.14)
80 24.23 24.46(-0.23) 24.05(0.19) 24.41(-0.17) 24.22(0.01) 24.17(0.06) 24.11(0.12)

512 × 512 Fingerprint
5 36.27 35.20(1.07) 36.29(-0.02) 36.27(0.00) 35.82(0.44) 35.28(0.99) 34.93(1.34)

10 32.08 30.97(1.11) 32.23(-0.15) 32.10(-0.02) 31.74(0.34) 31.76(0.31) 31.33(0.75)
30 26.26 26.24(0.02) 26.37(-0.11) 26.06(0.21) 26.37(-0.11) 26.20(0.07) 26.13(0.13)
50 24.00 24.11(-0.11) 24.01(-0.01) 23.67(0.33) 23.95(0.05) 23.78(0.22) 23.89(0.11)
80 22.10 22.18(-0.08) 21.99(0.11) 21.66(0.44) 21.91(0.19) 21.63(0.47) 21.79(0.31)

TABLE I: PSNR of denoised images using various transforms.
Numbers in brackets are the PSNR differences between the
DAS-2 column and the current column. Positive numbers
indicate better performance of DAS-2 than others in dB.

From Table I, the performance of our DAS-2 is in general
better than the methods of DT-CWT, DNST, and NSCT for
all images, given that the redundancy rates of DNST and
NSCT are extremely high (49 and 53 due to their undecimation
property). Comparing to DAS-1, the performance of DAS-2
is better when the noise variance σ is relatively low (< 50).
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Especially when the image is of texture-rich such as Barbara
and Fingerprint, the DAS-2 could bring up to 0.5 dB
improvement for Barbara and up to 1.1 dB improvement
for Fingerprint. Comparing to TP-CTF↓6, our DAS-2
performs better for the images of Lena, Barbara, and
Boat. The performance of TP-CTF↓6 is quit well for the
image Fingerprint given that it only has redundancy rate
as low as 2.67. Finally, comparing to TP-CTF6 which has
redundancy rate 10.67, we see that DAS-2 and TP-CTF6

perform quite similar for all images when σ is low (< 30).
When σ is high, our DAS-2 performs better than TP-CTF6

for images Barbara and Fingerprint, while for Lena
and Boat, TP-CTF6 performs better than our DAS-2.

Note that most of information in the images of Lena and
Boat are edge-like. The image Barbara contains both oscil-
lating patterns (texture) and edge-like features while the image
Fingerprint is mainly oscillating patterns. The PSNRs
in Table I confirm our expectation of DAS-2 filter banks. It
preserves the performance over general images comparing to
other state-of-the-art methods while significant improves the
performance for images containing both edge-like structures
and texture-like structures. Fig. 2 illustrates the significant
improvement in visualization of our DAS-2 comparing to other
methods for the image Barbara.

Next, we test the performance of our DAS-2 filter banks
in image inpainting. We use 4 types of masks: Text1
(small gaps), Text2 (larger gaps), M50 (50% of random
pixel missing), and M80 (80% of random pixel missing); see
Fig. 7 (e)–(h) for the 4 masks. Each images in Fig. 7 (a)–
(d) is masked with each mask and added Gaussian noise
for σ ∈ {0(no noise), 5, 10, 30, 50}. We then employ the
same inpainting framework developed in [30], which uses
an iterative thresholding algorithm with gradually decreasing
threshold values. The results are reported in Table II. Since
DAS-1 and TP-CTF6 outperform many other approaches (see
[32, Section 4]), here we only report the comparisons among
DAS-2, DAS-1, TP-CTF↓6, and TP-CTF6.

For masks Text1 and Text2, DAS-2 outperforms DAS-
1 and TP-CTF↓6 for all cases except for a few cases of
slightly underperformance, e.g., the cases of σ = 0 for
Fingerprint for both masks and σ = 0 for Barbara
with mask Text1. Comparing to TP-CTF6, DAS-2 outper-
forms TP-CTF6 for images Barbara and Fingerprint
while slightly underperforms TP-CTF6 for images Lena and
Boat. See Figs. 8 and 9 for their visual comparisons.

For masks M50 and M80, DAS-2 outperforms DAS-1 for
all images when noise variance σ < 50. DAS-2 outperforms
TP-CTF↓6 for images Lena, Barbara, and Boat while it
underperforms TP-CTF↓6 for the image Fingerprint for
σ < 50. Comparing to TP-CTF6, DAS-2 performs better
for images Barbara and Fingerprint while TP-CTF6

performs better for the other two images.
Finally, we introduce an experiment on texture classifi-

cation, to further justify that our DAS-2 is more desirable
for texture representation than other transforms. We use a
feature descriptor HSC introduced in [28] for our texture

Text1 Text2

σ DAS-2 DAS-1 TP-CTF↓6 TP-CTF6 DAS-2 DAS-1 TP-CTF↓6 TP-CTF6
512 × 512 Lena

0 37.91 37.98(-0.07) 37.71 (0.2) 38.02(-0.11) 34.04 33.93(0.11) 33.92(0.12) 34.31(-0.27)
5 35.16 35.15(0.01) 34.87(0.29) 35.19(-0.03) 32.81 32.63(0.18) 32.52(0.29) 32.97(-0.16)
10 33.41 33.34(0.07) 33.08(0.33) 33.42(-0.01) 31.69 31.58(0.11) 31.32(0.37) 31.80(-0.11)
30 29.66 29.68(-0.02) 29.32(0.34) 29.81(-0.15) 28.72 28.84(-0.12) 28.34(0.38) 28.89(-0.17)
50 27.64 27.82(-0.18) 27.33(0.31) 27.85(-0.21) 27.02 27.20(-0.18) 26.60(0.42) 27.22 (-0.2)

512 × 512 Barbara
0 36.60 36.16(0.44) 36.68(-0.08) 36.59(0.01) 33.69 33.41(0.28) 32.99 (0.7) 32.68(1.01)
5 34.14 33.75(0.39) 33.97(0.17) 34.05(0.09) 32.40 31.94(0.46) 31.54(0.86) 31.32(1.08)
10 32.11 31.67(0.44) 31.76(0.35) 31.81 (0.3) 30.81 30.39(0.42) 29.99(0.82) 29.85(0.96)
30 27.80 27.38(0.42) 27.21(0.59) 27.18(0.62) 26.95 26.65 (0.3) 26.24(0.71) 26.24(0.71)
50 25.57 25.29(0.28) 24.91(0.66) 24.91(0.66) 24.95 24.73(0.22) 24.18(0.77) 24.30(0.65)

512 × 512 Boat
0 34.8 34.69(0.11) 34.57(0.23) 34.96(-0.16) 30.73 30.74(-0.01) 30.39(0.34) 30.80(-0.07)
5 32.76 32.63(0.13) 32.46(0.30) 32.81(-0.05) 29.84 29.82(0.02) 29.42(0.42) 29.83(0.01)
10 30.95 30.82(0.13) 30.65(0.30) 31.04(-0.09) 28.82 28.85(-0.03) 28.40(0.42) 28.80(0.02)
30 27.31 27.38(-0.07) 26.95(0.36) 27.41(-0.10) 26.18 26.34(-0.16) 25.79(0.39) 26.24(-0.06)
50 25.47 25.60(-0.13) 25.11(0.36) 25.57(-0.10) 24.72 24.84(-0.12) 24.32(0.40) 24.80(-0.08)

512 × 512 Fingerprint
0 31.78 31.22(0.56) 31.87(-0.09) 31.35(0.43) 28.30 27.70(0.60) 28.36(-0.06) 27.78(0.52)
5 30.40 29.85(0.55) 30.39(0.01) 30.03(0.37) 27.69 27.13(0.56) 27.65(0.04) 27.17(0.52)
10 28.79 28.19(0.60) 28.77(0.02) 28.46(0.33) 26.76 26.32(0.44) 26.67(0.09) 26.24(0.52)
30 25.02 24.99(0.03) 24.98(0.04) 24.70(0.32) 24.12 24.12 (0.00) 23.99(0.13) 23.59(0.53)
50 23.22 23.25(-0.03) 23.05(0.17) 22.76(0.46) 22.60 22.64(-0.04) 22.39(0.21) 22.00(0.60)

50% missing 80% missing

σ DAS-2 DAS-1 TP-CTF↓6 TP-CTF6 DAS-2 DAS-1 TP-CTF↓6 TP-CTF6
512 × 512 Lena

0 37.69 35.72(1.97) 37.68(0.01) 38.00(-0.31) 31.86 30.74(1.12) 31.99(-0.13) 32.33(-0.47)
5 35.09 33.97(1.12) 34.99 (0.1) 35.40(-0.31) 31.03 30.20(0.83) 30.76(0.27) 31.44(-0.41)
10 33.08 32.57(0.51) 32.86(0.22) 33.40(-0.32) 29.92 29.54(0.38) 29.34(0.58) 30.25(-0.33)
30 28.89 28.90(-0.01) 28.52(0.37) 29.18(-0.29) 26.61 26.76(-0.15) 25.94(0.67) 26.95(-0.34)
50 26.75 26.92(-0.17) 26.39(0.36) 27.06(-0.31) 24.78 25.01(-0.23) 24.11(0.67) 25.15(-0.37)

512 × 512 Barbara
0 35.86 33.77(2.09) 35.75(0.11) 35.73(0.13) 29.32 27.84(1.48) 28.55(0.77) 28.16(1.16)
5 33.44 32.14 (1.3) 33.23(0.22) 33.42(0.02) 28.57 27.30(1.27) 27.73(0.84) 27.73(0.85)
10 31.29 30.47(0.82) 30.94(0.35) 31.11(0.18) 27.43 26.72(0.71) 26.56(0.87) 26.70(0.73)
30 26.73 26.32(0.41) 25.95(0.78) 25.95(0.78) 24.23 24.16(0.07) 23.18(1.05) 23.34(0.89)
50 24.47 24.25(0.22) 23.59(0.88) 23.60(0.87) 22.30 22.26(0.04) 21.42(0.88) 21.90 (0.4)

512 × 512 Boat
0 34.27 32.65(1.62) 34.00(0.27) 34.42(-0.15) 28.16 27.24(0.92) 28.03(0.13) 28.58(-0.42)
5 32.17 31.25(0.92) 32.01(0.16) 32.50(-0.33) 27.48 26.83(0.65) 27.28(0.20) 27.98(-0.50)
10 30.33 29.98(0.35) 30.11(0.22) 30.65(-0.32) 26.61 26.45(0.16) 26.23(0.38) 27.08(-0.47)
30 26.39 26.48(-0.09) 26.07(0.32) 26.66(-0.27) 24.22 24.34(-0.12) 23.75(0.47) 24.46(-0.24)
50 24.56 24.63(-0.07) 24.23(0.33) 24.75(-0.19) 22.76 22.89(-0.13) 22.41(0.35) 22.96(-0.20)

512 × 512 Fingerprint
0 33.64 29.35(4.29) 34.19(-0.55) 34.12(-0.48) 26.25 23.87(2.38) 26.77(-0.52) 26.00(0.25)
5 31.12 28.40(2.72) 31.54(-0.42) 31.50(-0.38) 25.58 23.64(1.94) 25.87(-0.29) 25.33(0.25)
10 28.84 27.57(1.27) 29.09(-0.25) 28.88(-0.04) 24.54 24.10(0.44) 24.60(-0.06) 24.12(0.42)
30 24.33 24.35(-0.02) 24.43(-0.10) 24.07(0.26) 22.12 22.10(0.02) 21.81(0.31) 21.51(0.61)
50 22.41 22.40(0.01) 22.32(0.09) 22.01(0.40) 20.60 20.57(0.03) 20.26(0.34) 19.96(0.64)

TABLE II: PSNR of inpainted Lena, Barbara, Boat, and
Fingerprint using different transforms for masks Text1,
Text2, M50 and M80.

classification: Fixed a transform in DAS-2, DAS-1, TP-CTF↓6,
TP-CTF6, DT-CWT, DNST, and NSCT, application of such
a transform to an image results in a sequence of filtered
coefficient matrices w with respect to various orientations. A
histogram (vector) is computed from the absolute values of
the entries in w. Such histograms from all the output filtered
coefficient matrices are then concatenated as a feature vector
for the given image with respect to such a transform, and
normalized with respect to the L2-norm. We use the UMD
texture dataset [31] to extract feature representations for each
transform and then use the approach of SVMs [5] to perform
texture classification. The UMD texture database consists of
25 classes and 40 samples of 1280× 960 pixels in each class
(1000 images in total). In the classification process, we take
10 samples randomly from each class for training and the
remaining 30 samples for testing. 30 repeated experiments
are carried out to obtain the average classification rate. The
results are reported in Table III and it can be seen that DAS-2
outperforms the other transforms consistently, of which only
TP-CTF6 gives a comparable performance. But DAS-2 has a
significantly lower redundancy rate.
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(a) Tablecloth (b) Missing data

(c) DAS-1 (d) TP-CTF↓6

(e) TP-CTF6 (f) DAS-2

Fig. 8: Comparison results of inpainting. (a) Original (table-
cloth cropped from Barbara). (b) Missing data (with mask
Text2) plus corrupted by Gaussian noise with σ = 10. (c)
DAS-1: look similar to DAS-2. (d) TP-CTF↓6: mask can be
seen. (e) TP-CTF6: clearly see the mask. (f) DAS-2: noise
removed and missing area is inpainted.

Texture Classification
DAS-2 DAS-1 TP-CTF↓6 TP-CTF6 DT-CWT DNST NSCT
(6.39) (6.16) (2.67) (10.67) (4) (49) (53)
85.8% 80.71% 83.4% 85.31% 81.85% 77.79% 79.9%

TABLE III: Average classification rate of various transforms
on the UMD texture database.

VI. AFFINE SHEAR TIGHT FRAMES WITH 2-LAYER
STRUCTURE

In this section, we connect our DAS-2 filter banks to the
affine shear tight frames with 2-layer structure for theoretical
justifications of the sparse representation property.

Given a sequence {a; bj,`,ι,τo }, j ∈ N0 of DAS-2 filter
banks, it naturally connects to a sequence of directional

(a) Eye (b) Missing Data

(c) DAS-1 (d) TP-CTF↓6

(e) TP-CTF6 (f) DAS-2

Fig. 9: Comparison results of inpainting. We compare three
parts of the eye: the eyebrow, the bottom eyelash, and the iris.
(a) Original (eye part cropped from Lena). (b) Missing data
(with mask Text2) plus corrupted by Gaussian noise with
σ = 10. (c) DAS-1: recover the eyebrow better than the other
methods but not so good at the bottom eyelash and the iris. (d)
TP-CTF↓6: not as good as other methods for all three parts. (e)
TP-CTF6: better than DAS-1 and TP-CTF↓6 for the bottom
eyelash and the iris. (f) DAS-2: recover more details at the iris
and the bottom eyelash than other methods.

framelet systems (with 2-layer structure). In fact, one can
defined a function (or distribution) ϕ through ϕ̂(ξ) :=
limJ→∞

∏J
j=0 â(2−j−1ξ), ξ ∈ R2 which automatically satis-

fies the refinement relation ϕ̂(2ξ) = â(ξ)ϕ(ξ), ξ ∈ R2. From
ϕ and the high-pass filters bj,`,ι,τo , one can define the functions

(or distributions) ψ̃j,`,ι,τo by ̂̃
ψj,`,ι,τo (Aj,ιξ) = b̂j,`,ι,τo (ξ)ϕ̂(ξ),

ξ ∈ R2. One can then form a sequence of affine systems
ASJ(ϕ; {ψ̃j,`,ι,τo : `, ι, τ, o}∞j=J) similar to those defined in
[16]. Under certain subsampling relations [16, Theorem 5],
one can obtain a sequence of affine shear systems (with 2-
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layer structure), which we detail below.
Recall that EX = I2 and EY =

[
0 1
1 0

]
, ι ∈ {in, out},

and o ∈ {X,Y }. We define S` :=
[
1 `
0 1

]
and S` :=

[
1 0
` 1

]
as the shear matrices. At scale j, we consider the aniso-
tropic dilation matrices Aj,in := diag(2j−1/2,

√
2
j−1/2

) and
Aj,out := diag(2j ,

√
2
j
) for the inner and outer layers,

respectively. We also define Bj,ι := (Aj,ι)−1 for ι ∈ {in, out}.
An affine shear system is obtained by applying shear,

dilation, and translation to generators at different scales. To
balance the shear operation, we consider cone-adapted systems
[12], [14], [15], [21], which usually consist of three subsys-
tems: one subsystem covers the low frequency region, one
subsystem covers the horizontal cone X := {ξ = (ξ1, ξ2) ∈
R2 : |ξ2/ξ1| ≤ 1}, and one subsystem covers the vertical cone
Y := {ξ = (ξ1, ξ2) ∈ R2 : |ξ1/ξ2| ≤ 1} in the frequency
plane. Unlike the affine shear systems introduced in [16] that
have only a single layer structure, in this paper we introduce
affine shear systems with 2-layer structure. That is, at each
scale j, the horizontal and vertical cones are further divided
into an inner layer and an outer layer. More precisely, Let
{ϕ} ∪ Ψj,in ∪ Ψj,out to be the set of generators in L2(R2)
with Ψj,ι := {ψj,`,ιX , ψj,`,ιY : |`| ≤ sιj}, where sinj , s

out
j are

nonnegative integers. An affine shear system (with 2-layer
structure and with the initial scale J) is then defined to be

ASJ(ϕ; {Ψj,in,Ψj,out}∞j=J) := {2jϕ(2j · −k) : k ∈ Z2}

∪ {| detAj,ι|
1
2ψj,`,ιo (S−`Aj,ι · −k) : k ∈ Z2, |`| ≤ sιj , ι, o}.

(10)

In a nutshell, at scale j, the set {ϕ(2j · −k) : k ∈ Z2}
of functions covers the low-frequency spectrum. The set
{ψj,`,ιo (S−`Aj,ι · −k) : ` = −sιj , . . . , sιj , k ∈ Z2} covers the
horizontal and vertical cone for o = X,Y and inner and outer
cone for ι = in, out, respectively.

We say that ASJ(ϕ; {Ψj,in,Ψj,out}∞j=J) is an affine
shear tight frame (with 2-layer structure) for L2(R2) if
all generators {ϕ} ∪ {Ψj,in,Ψj,out}∞j=J ⊆ L2(R2) and
for all f ∈ L2(R2), ‖f‖22 =

∑
k∈Z2

∣∣〈f, 2Jϕ(2J · −k)
〉∣∣2 +∑∞

j=J

∑
ι,o

∑
`

∑
k∈Z2

∣∣∣〈f, |detAj,ι| 12ψj,`,ιo (S−`Aj,ι · −k)
〉∣∣∣2.

MRA structure is a very desirable property because a filter
bank and a fast transform algorithm can be easily introduced
based on it. As argued in [19], a sequence of affine systems
intrinsically gives an MRA structure and hence a filter bank
and its associated fast transform algorithm. We next follow
the notion of a sequence of affine shear systems [16], [32]
to construct our affine shear tight frames with 2-layer struc-
ture. Similar to [16, Theorem 2], one can give a complete
characterization of a sequence of affine shear systems to be
a sequence of affine shear tight frames. In this paper, we are
interested in the case that all generators are nonnegative in

the frequency domain (that is ϕ̂ ≥ 0 and ψ̂j,`,ιo ≥ 0 for all
j, `, ι, o), since it leads to simple characterization conditions
and easy construction of digital affine shear filter banks. In
such a case, we have the following simple characterization
result for a sequence of affine shear systems (with 2-layer

structure) to be a sequence of affine shear tight frames (with
2-layer structure)(see [32, Theorem 2.1]).

Theorem 3: Fixed J0 ∈ Z, let ASJ(ϕ; {Ψj,in,Ψj,out}∞j=J)

be defined as in (10) for integer J ≥ J0. Suppose ĥ(ξ) ≥ 0
for all h ∈ {ϕ} ∪ {Ψj,in,Ψj,out}∞j=J0 . Then for all J ≥ J0,
ASJ(ϕ; {Ψj,in,Ψj,out}∞j=J) is an affine shear tight frame for
L2(R2) if and only if the following identities hold:

lim
j→∞
〈|ϕ̂(2−j ·)|2, g〉 = 〈1, g〉 ∀g ∈ C∞c (R2), (11)

for all j ≥ J0,

|ϕ̂(2−j−1·)|2 = |ϕ̂(2−j ·)|2 +
∑
ι,o

sιj∑
`=−sιj

∣∣∣∣ψ̂j,`,ιo (S`B
j,ι·)

∣∣∣∣2 , (12)

and for every h in {ϕ} ∪ {Ψj,in,Ψj,out}∞j=J0 ,

ĥ(ξ)ĥ(ξ + 2πk) = 0, a.e. ξ ∈ R2, k ∈ Z2\{0}. (13)

The conditions in Theorem 3 greatly simplify our con-
struction of affine shear tight frames with 2 layer structure. In
fact, condition (12) implies that we can obtain the generators
ψj,`,ιo from the splitting of |ϕ̂(2−j−1·)|2 − |ϕ̂(2−j ·)|2, and
condition (13) shows that the generators need to have non-
overlap 2πZ2 shifts. We next briefly present the construction
of affine shear tight frames (with 2-layer structure).

Let ν [c,ε] be the 1D ‘bump’ function as given in Section II.
Let γε := ν [1/2,ε] for 0 < ε ≤ 1/2 and α := ν [c,ε] for
c+ ε < 1

1+2ε ·
π
2 . Define 2D functions γ(ξ1, ξ2) := γε(ξ2/ξ1)

and ϕ̂ := α⊗α. Define ωin,ωout as follow:

ωout :=
√
|ϕ̂(2−1·)|2 − |ϕ̂(2−1/2·)|2,

ωin :=
√
|ϕ̂(2−1/2·)|2 − |ϕ̂(·)|2.

(14)

For λ > 1, define `λ := bλ− (1/2 + ε)c+ 1 = bλ+ (1/2−
ε)c, λj,in :=

√
2
j−1/2

, and λj,out :=
√

2
j
. Define Γιj(ξ) :=∑

o

∑sιj
`=−sιj

|γ(S`B
j,ιEoξ)|2 =

∑sιj
`=−sιj

(
|γε(λj,ι

ξ2
ξ1

+ `)|2 +

|γε(λj,ι
ξ1
ξ2

+ `)|2
)

for ξ 6= 0 and ι ∈ {in, out}, where sιj =

`λj,ι . It is easy to check that Γιj has the following properties:
0 < Γιj ≤ 2, Γιj(Eo·) = Γιj(·), and Γιj(tξ) = Γιj(ξ) for ξ 6= 0.

Now define ψj,`,ιo by

ψ̂j,`,ιX :=ωι(2−j(S`Bλιj )
−1ξ)

γε(ξ2/ξ1)√
Γιj((S`Bλιj )

−1ξ)
,

ψ̂j,`,ιY :=ωι(2−j(S`Bλιj )
−1ξ)

γε(ξ1/ξ2)√
Γιj((S`Bλιj )

−1ξ)
,

(15)

for ι ∈ {in, out}. It is easy to show that (11), (12), and (13)

hold for the above construction of ϕ̂, ψ̂j,`,ιo . Consequently, we
have the following result.

Corollary 4: Let ASJ(ϕ, {Ψj,in,Ψj,out}∞j=J), J ≥ J0 be
a sequence of affine shear systems with 2-layer structure and
with ϕ, ψj,`,ιo being defined as in (14), (15), respectively. Then
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ASJ(ϕ, {Ψj,in,Ψj,out}∞j=J) is an affine shear tight frame for
every J ≥ J0.

As proved in [16], an affine shear tight frame has a
underlying (generalized) filter bank [19]. Similarly, for an
affine shear tight frame with 2-layer structure given above,
it also has an underlying (generalized) DAS-2 filter bank.
Indeed, define â(ξ) := ϕ̂(2ξ)

ϕ̂(ξ) , b̂ι(ξ) := ωι(2ξ)
ϕ(ξ) , and b̂j,`,ιo (ξ) :=

ψ̂j,`,ιo (S`B
j,ι2j+1ξ)

ϕ̂(ξ) . Then it is easy to show b̂j,`,ιX (ξ) =

b̂ι(ξ)
γε(λj,ι

ξ2
ξ1

+`)

Γιj(ξ)
and b̂j,`,ιY (ξ) = b̂ι(ξ)

γε(λj,ι
ξ1
ξ2

+`)

Γιj(ξ)
. Furt-

her splitting of b̂j,`,ιo to positive axis and negative axis,
we obtain a sequence of DAS-2 filter banks similar to
those in Section II. Moreover, fix J0 = 0 and rearrange
Ψj,in = Ψ2j−1,Ψj,out = Ψ2j ; i.e., ψ2j−1,`

o := ψj,`,ino and
ψ2j,`
o := ψj,`,outo . Then, the affine shear tight frame with 2-

layer structureASJ(ϕ, {Ψj,in,Ψj,out}∞j=J) can be regarded as
a special case of an affine shear tight frame ASJ(ϕ, {Ψj}∞j=0)

in [16] with λ =
√

2. Since the affine shear tight frame
provides (nearly) optimal sparse approximation for cartoon-
like functions [14], we conclude that our affine shear tight
frame with 2-layer structure also provides (nearly) optimal
sparse approximation for cartoon-like functions.

We remark that though in the function setting, our affine
shear tight frames with the 2-layer structure can be regraded as
a special case of the affine shear tight frames using non-dyadic
scale parameter, yet in practice, our DAS-2 filter banks cannot
be replaced by applying the DAS-1 filter banks iteratively.
One of the reasons is that the downsampling process causes
the information loss of the images. More precisely, due to the
downsampling process, the low-pass filtered image (obtained
from the DAS-1 filter bank at previous level) to be processed
already lost certain information which originally might be
captured if the 2-layer filter bank is used in the previous level.
Thus, the two-layer structure is necessarily and important
when one would like to extract more information from a given
image at certain level.
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