
0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2441711, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS 

A Modified Partial Product 

Generator for Redundant Binary 

Multipliers 

Xiaoping Cui, Weiqiang Liu, Senior Member, IEEE, 
Xin Chen, Earl E. Swartzlander, Jr., Life Fellow, IEEE 

and Fabrizio Lombardi, Fellow, IEEE 
 

Abstract—Due to its high modularity and carry-free addition, a 
redundant binary (RB) representation can be used when designing 
high performance multipliers. The conventional RB multiplier re-
quires an additional RB partial product (RBPP) row, because an 
error-correcting word (ECW) is generated by both the radix-4 Mod-
ified Booth encoding (MBE) and the RB encoding. This incurs in an 
additional RBPP accumulation stage for the MBE multiplier. In this 
paper, a new RB modified partial product generator (RBMPPG) is 
proposed; it removes the extra ECW and hence, it saves one RBPP 
accumulation stage. Therefore, the proposed RBMPPG generates 
fewer partial product rows than a conventional RB MBE multiplier. 
Simulation results show that the proposed RBMPPG based designs 
significantly improve the area and power consumption when the 
word length of each operand in the multiplier is at least 32 bits; 
these reductions over previous NB multiplier designs incur in a 
modest delay increase (approximately 5%). The power-delay prod-
uct can be reduced by up to 59% using the proposed RB multipliers 
when compared with existing RB multipliers. 
Index Terms—Redundant binary, modified Booth encoding, RB 

partial product generator, RB multiplier. 

——————————�—————————— 

1 INTRODUCTION 

igital multipliers are widely used in arithmetic 

units of microprocessors, multimedia and digital 

signal processors. Many algorithms and architectures 

have been proposed to design high-speed and low-

power multipliers [1-13]. A normal binary (NB) multipli-

cation by digital circuits includes three steps. In the first 

step, partial products are generated; in the second step, 

all partial products are added by a partial product re-

duction tree until two partial product rows remain. In 

the third step, the two partial product rows are added by 

a fast carry propagation adder. Two methods have been 

used to perform the second step for the partial product 

reduction. A first method uses 4-2 compressors, while a 

second method uses redundant binary (RB) numbers [5-

6]. Both methods allow the partial product reduction tree 

to be reduced at a rate of 2:1. 

The redundant binary number representation has been 

introduced by Avizienis [1] to perform signed-digit 

arithmetic; the RB number has the capability to be 

represented in different ways. Fast multipliers can be 

designed using redundant binary addition trees [2-3]. 

The redundant binary representation has also been ap-

plied to a floating-point processor and implemented in 

VLSI [4]. High performance RB multipliers have become 

popular due to the advantageous features, such as high 

modularity and carry-free addition [5-9]. 

A RB multiplier consists of a RB partial product (RBPP) 

generator, a RBPP reduction tree and a RB-NB converter. 

A Radix-4 Booth encoding or a modified Booth encoding 

(MBE) is usually used in the partial product generator of 

parallel multipliers to reduce the number of partial 

product rows by half [5-6] [10-13]. A RBPP row can be 

obtained from two adjacent NB partial product rows by 

inverting one of the pair rows [5-6]; an N-bit convention-

al RB MBE (CRBBE-2) multiplier requires ��/4� RBPP 

rows. An additional error-correcting word (ECW) is also 

required by both the RB and the Booth encoding [5-6] 

[14]; therefore, the number of RBPP accumulation stages 

(NRBPPAS) required by a power-of-two word-length (i.e., 

2�-bit) multiplier is given by: 
NRBPPAS = �log�(�/4+ 1)�, 

 			= n − 1, if � = 2�   (1) 

If the additional ECW can be removed, an RBPP accu-

mulation stage is saved, so resulting in improvements of 

complexity and critical path delay for a RB multiplier. 

For example, a conventional 32-bit RB multiplier has 4 

RBPP accumulation stages; if the ECW is removed, then 

the number of RBPP accumulation stages is reduced to 3, 

i.e., the stage count is decreased by 25%. Note that the 

problem of extra ECW does not exist in standard signifi-

cand size (i.e., 24×24-bit and 54×54-bit) RB multipliers as 

used in floating point-arithmetic units [5-6]. 

Alternatively, a high-radix Booth encoding technique 

can reduce the number of partial products. However, the 

number of expensive hard multiples (i.e., a multiple that 

is not a power of two and the operation cannot be per-

formed by simple shifting and/or complementation) in-

creases too [14-16]. Besli et al. [16] noticed that some hard 

multiples can be obtained by the differences of two sim-

ple power-of-two multiplies. A new radix-16 Booth en-

coding (RBBE-4) technique without ECW has been pro-

posed in [14]; it avoids the issue of hard multiples. A 

radix-16 RB Booth encoder can be used to overcome the 

hard multiple problem and avoid the extra ECW, but at 

the cost of doubling the number of RBPP rows. There-

fore, the number of radix-16 RBPP rows is the same as in 

the radix-4 MBE. However, the RBPP generator based on 

a radix-16 Booth encoding has a complex circuit struc-

ture and a lower speed compared with the MBE partial 

product generator [10] when requiring the same number 

of partial products.  

This paper focuses on the RBPP generator for design-
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ing a 2� -bit RB multiplier with fewer partial product 

rows by eliminating the extra ECW. A new RB modified 

partial product generator based on MBE (RBMPPG-2) is 

proposed. In the proposed RBMPPG-2, the ECW of each 

row is moved to its next neighbor row. Furthermore, the 

extra ECW generated by the last partial product row is 

combined with both the two most significant bits (MSBs) 

of the first partial product row and the two least signifi-

cant bits (LSBs) of the last partial product row by logic 

simplification. Therefore, the proposed method reduces 

the number of RBPP rows from ��/4+ 1�	to	��/4�, i.e., a 

RBPP accumulation stage is saved. The proposed me-

thod is applied to 8×8-bit, 16×16-bit, 32×32-bit, and 

64×64-bit RB multiplier designs; the designs are synthe-

sized using the NanGate 45nm Open Cell Library. The 

proposed designs achieve significant reductions in area 

and power consumption compared with existing multip-

liers when the word length of each of the operands is at 

least 32 bits. While a modest increase in delay is encoun-

tered (approximately 5%), the power-delay product 

(PDP) at word lengths of at least 32 bits confirms that the 

proposed designs are the best also by this figure of merit. 

This paper is organized as follows. Section 2 intro-

duces radix-4 Booth encoding. The design of the conven-

tional RBPP generator is also reviewed. Section 3 

presents the proposed RBMPPG. This section also de-

monstrates the adoption of the proposed RBMPPG into 

various word-length RB multipliers. Section 4 provides 

the evaluation results of the new RB multipliers using 

the proposed RBMPPG for different word lengths and 

compares them to previous best designs found in the 

technical literature. The conclusion is provided in Sec-

tion 5. 

2 REVIEW OF BOOTH ENCODING AND RB 

PARTIAL PRODUCT GENERATOR 

2.1 Radix-4 Booth Encoding 

Booth encoding has been proposed to facilitate the 

multiplication of two's complement binary numbers [17]. 

It was revised as modified Booth encoding (MBE) or ra-

dix-4 Booth encoding [18]. The MBE scheme is summa-

rized in Table I, where � = ����	����… ��  ����  stands 
for the multiplicand, and 	� = ����	����… �� ���� stands 

for the multiplier. The multiplier bits are grouped in sets 

of three adjacent bits. The two side bits are overlapped 

with neighboring groups except the first multiplier bits 

group in which it is {b1, b0, 0}. Each group is decoded by 

selecting the partial product shown in Table I, where 2A 

indicates twice the multiplicand, which can be obtained 

by left shifting. Negation operation is achieved by in-

verting each bit of A and adding ‘1’ (defined as correc-

tion bit) to the LSB [10-13]. Methods have been proposed 

to solve the problem of correction bits for NB radix-4 

Booth encoding (NBBE-2) multipliers. However, this 

problem has not been solved for RB MBE multipliers.  

2.2 RB Partial Product Generator 

As two bits are used to represent one RB digit, then a 

RBPP is generated from two NB partial products [1-6]. 

The addition of two N-bit NB partial products X and Y 

using two’s complement representation can be expressed 

as follows [6]: 	 + 
 = 	 − 
 − 1 

= �−��2� +
��2�
���

���

�− �−��2� +
��2�
���

���

�− 1 

= −��� − ���2� +
(�� − ��)
���

���

2� − 1 

= �	,
� − 1    (2) 

where 
 is the inverse of 
, and the same convention is 

used in the rest of the paper. The composite number �	,
� can be interpreted as a RB number. The RBPP is 

generated by inverting one of the two NB partial prod-

ucts and adding -1 to the LSB. Each RB digit 	� belongs 

to the set �1, 	0, 1�; this is coded by two bits as the pair 

(	�
�, 		�

	). Note that 1 = −1. RB numbers can be coded in 

several ways. Table II shows one specific RB encoding [6], 

where the RB digit is obtained by performing		�
	 − 	�

�. 
 

TABLE I 

MBE SCHEME 

b2i+1, b2i, b2i-1 Operation 

000 0 
001 +A 
010 +A 
011 +2A 
100 -2A 
101 -A 
110 -A 
111 0 

 
TABLE II 

RB ENCODING USED IN THIS WORK [6] 

�

	 �


� RB digit (��) 

0 0 0 
0 1 1 
1 0 1 
1 1 0 

 

Both MBE and RB coding schemes introduce errors 

and two correction terms are required: 1) when the NB 

number is converted to a RB format, -1 must be added to 

the LSB of the RB number; 2) when the multiplicand is 

multiplied by -1 or -2 during the Booth encoding, the 

number is inverted and +1 must be added to the LSB of 

the partial product. A single ECW can compensate errors 

from both the RB encoding and the radix-4 Booth recod-

ing. The conventional partial product architecture of an 
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8-bit MBE multiplier [5-6] is shown in Fig. 1, where b_p 

represents the bit position, ���	  or ����  and is generated by 

using an encoder and decoder (Fig. 2) [10]. An N-bit 

CRBBE-2 multiplier includes N/4  RBPP rows and one 

ECW; the ECW takes the form as follows: ��� = ���/
��0	���/
��…0	���0	���…0	���0	��� ,	 (3) 

where i represents the ith row of the RBPPs, ��� ∈ �0,1� 
and ��� ∈ �0, 1�. In ���, a -1 correction term is always re-

quired by RB coding. If  ��� also corrects the errors from 

the MBE recoding, then the correction term cancels out 

to 0. That is to say that if the multiplicand digit is in-

verted and added to 1, then ��� is 0, otherwise ��� is -1. 

The error-correcting digit ��� is determined only by the 

Booth encoding: 

��� = �0, no	negative	encoding
1, negative	encoding						�   (4) 
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+ + + + + + + + + + +
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0 11 10

0 0F FECW

 
Fig. 1 Conventional RBPP architecture for an 8-bit MBE multiplier. 

 

Fig. 2 An encoder and decoder of the MBE scheme [10]. 

 

As shown in Fig. 1 the first RBPP row, i.e. PP�, consists 

of the first partial product row PP�
	 and the second par-

tial product row PP�
� i.e.,���	 = ���	 ���	 … ���	 and ���� =���� ���� … ���� , where, ���	  and ���	  are the sign extension 

bits, so 

���	 = ���	      (5) ���	 = ��		�� ∙ 0 + ���� ∙ �� + ���� 	 ∙ �� + ���� ∙ �� 

= ���� ∙ �� + ����    (6) 

According to Eq. (2), the sign extension bit ���	  is also 

the inverse of ���	 . The ����  in PP�
� and the ����  in PP�

� are 

also negated as ����  and ���� . Eq. (5) and Eq. (6) are further 

used in the next section when presenting the proposed 

modified RBPP generator. 

For a 2�-bit CRBBE-2 multiplier, one additional RBPP 

accumulation stage is required due to the ECW. For a 64-

bit RB multiplier, there are 5 RBPP accumulation stages; 

therefore, the number of RBPP accumulation stages can 

be reduced by 20% when eliminating the ECW in a 64-bit 

RB multiplier, which improves both the complexity and 

the critical path delay. 

3 PROPOSED RB PARTIAL PRODUCT GENERATOR 

A new RB modified partial product generator based 

on MBE (RBMPPG-2) is presented in this section; in this 

design, ECW is eliminated by incorporating it into both 

the two MSBs of the first partial product row (���	) and 

the two LSBs of the last partial product row (��(�/
)
� ). 

3.1 Proposed RBMPPG-2 

Fig. 3 illustrates the proposed RBMPPG-2 scheme for 

an 8x8-bit multiplier. It is different from the scheme in 

Fig. 1, where all the error-correcting terms are in the last 

row. ECW1  is generated by PP� and expressed as 

ECW� = 0	E��	0	F�� .    (7) 

The ECW2 generated by PP� (also defined as an extra 

ECW) is left as the last row and it is expressed as: 

ECW� = 0	���	0	���.    (8) 
To eliminate a RBPP accumulation stage, ECW2 needs 

to be incorporated into PP� and PP�. As discussed in Sec-
tion 2.2 for	��� and as per Table I, F20 is determined by ���
�� as follows: 

��� = �−1, ���
�� = 000,001,010,011, or	111
0,																	���
�� = 100,101, or	110 � (9) 

As per Table I, when ���
�� = 111 , −0 = 0  can be 

used. Therefore, ���	can be expressed as follows: 

��� = �−1,														���
�� = 000,001,010, or	011
0,																	���
�� = 100,101, 110, or	111 � (10) 
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(c) 

Fig. 3 (a) The first new RBMPPG-2 architecture for an 8-bit MBE 

multiplier; (b) The further revised RBMPPG-2 architecture by re-

placing E22 and F20 with E2, �
�(��)
� , and �

�(��)
� ; (c) The final proposed 

RBMPPG-2 architecture by totally eliminating ECW2 and further 



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2441711, IEEE Transactions on Computers

4 IEEE TRANSACTIONS ON COMPUTERS 

combing E2 into ���

� , ���

� , ���

� , and  ���

� . 

By setting PP�
	 to all ones and adding +1 to the LSB of 

the partial product, F20 can then be determined only by �� as follows: 

��� = �−1, 	�� = 0

0, 	�� = 1
�    (11) 

A modified radix-4 Booth encoding and a decoding 

circuit for the partial product ���	are proposed here (Fig. 

4); an extra 3-input OR gate is then added to the design 

of [10] (Fig. 2). The three inputs of the additional OR gate 

are �� , �
 , and�� . When ���
�� = 111 , it is clear that ��	�
	�� = 000, ���	 = 1, and ���	 is set to all ones. So, E22 

and F20 in ECW2 are now determined by ������without �
, �� . Although the complexity is slightly increased 

compared with the previous design (Fig. 2), the delay 

stage remains the same. 

In this work, Q��
	 , Q��

	 , Q��
�  , and Q��

�  are used to 

represent the modified partial products (i.e., replacing 

p��
	 , p��

	 , p��
�  and p��

� ). 	q�(��)� , and q�(��)
�  are used to 

represent the additional partial products that are deter-

mined by 	F��. As -1 can be coded as 111 in RB format, 

E22 and F20 can be represented by E2,	 �(��)� ,  �(��)� , (Fig. 3 

(b)) as follows: 

�� = � ���, 							��� = 0��� − 1, 	��� = −1
�   (12) 

 �(��)� =  �(��)� = � 0, 	��� = 0

1, 	��� = −1
�   (13) 

As per Eq. (11) and Eq. (13),  �(��)� , and  �(��)�  can also 

be expressed as follows:  �(��)� =  �(��)� = b�!!!    (14) 

This is further explained by the truth table of E22, F20 

and E2,	 �(��)� ,  �(��)�  (Table III). Now ECW2 only includes 

E2 and �� ∈ �0, 1, 1�; E2 can be incorporated into the mod-

ified partial products "��
	 , "��

	 , "��
�  and "��

�  by replacing ���	 , ���	  and ���� , ����  in the shortest path (Fig. 3(c)). From 

the truth table, E2 can be determined by ������ as fol-

lows: 

�� = #−1, 																														������ = 000, or	010
1, 																																											������ = 101

0, 		������ = 001,011,100, 110, or	111 � (15) 

So the following three cases can be distinguished: 1) 

When E2=0, "��
	 , "��

	 , "��
�  and "��

�  remain unchanged as: "��
	 = ���	 , "��

	 = ���	 , "��
� = ����  and "��

� = ���� . 2) When �� = 1, a 1 is added to ���	 ���	 ���� ���� . 3) When �� = −1, a 1 

is subtracted from ���	 ���	 ���� ���� . 
 

Fig. 4 The modified radix-4 Booth encoding and decoding 

scheme for PP�
�. 

 

The relationships between "��
	 , "��

	 , "��
� , "��

�  and ���	 , ���	 , ���� , ����  are summarized in Table IV. As the two 

MSBs of ���	i.e., ���	  and ���	 take complementary values 

as shown in Eq. (4), the operations of adding or subtract-

ing a 1 will never incur in an overflow. Therefore, as per 

Eq. (15) and Table IV, the logic functions of "��
	 , "��

	 , "��
� , 

and "��
� can be expressed as follows: 

"��
	 = (�� ⊕ �� + ������) ⋅ ���	 + ��	�� ⋅ (���	 + ���� +���� ⊕													���	 ) + ������ ⋅ (���	 ���� ���� ⊕ ���	 )  (16) "��
	 = (�� ⊕ �� + ������) ⋅ ���	 + ��	�� ⋅ (���� +���� ⊕ ���	 ) 						+������ ⋅ (���� ���� ⊕ ���	 )   (17) "��
� = (�� ⊕ �� + ������) ⋅ ���� + ��	�� 	 ⋅ ���� ⊕ ����  						+������ ⋅ ���� ⊕ ����     (18) "��
� = (�� ⊕ �� + ������) ⋅ ���� + ��	�� 	 ⋅ ����  						+������ ⋅ ����     (19) 

TABLE III 

TRUTH TABLE OF E2,	�
2(−2)

− ,	�
2(−1)

−
AND �

21

− ,�
20

− . 

������ E22F20 �� �(��)�  �(��)�  ����  ����  

0 0 0  0 1  1 1 1  0 0 
0 0 1  0 0  0 0 0  �� �� 
0 1 0  0 1  1 1 1  �� �� 
0 1 1  0 0  0 0 0  �� 0 
1 0 0  1 1  0 1 1  ��!!! 1 

1 0 1  1 0  1 0 0  ��!!! ��!!! 
1 1 0  1 1  0 1 1  ��!!! ��!!! 
1 1 1  0 0  0 0 0  0 0 
 

TABLE IV 

THE TRUTH TABLE OF ���
	 , ���

	 , ���
� , ���

�  

���
� ���

� ���
� ���

�  ���

� ���

� ���

� ���

�  

(E2=0) 

���

� ���

� ���

� ���

�  

(E2=1) 

���

� ���

� ���

� ���

�  

(E2=－1) 

0100 0100 0101 0011 

0101 0101 0110 0100 

0110 0110 0111 0101 

0111 0111 1000 0110 

1000 1000 1001 0111 

1001 1001 1010 1000 

1010 1010 1011 1001 

1011 1011 1100 1010 

 

The delay of the RBMPPG-2 can be further reduced 

by generating "��
	 , "��

	 , "��
� , "��

�  directly from the multip-

licand A and the multiplier B. The relationships between ���	 , ���	  and A, B have been discussed in Section 2.2 as Eq. 

(5) and Eq. (6). The relationships between ���� ,	����  and A, 

B are also shown in Table III according to the MBE 

scheme. Therefore, Q��
	 , Q��

	 , Q��
� , and Q��

�  can be ex-

pressed as follows by replacing ���	 , ���	 , ���� , and ����  with 

the multiplicand bits (ai) and the multiplier bits (bi) after 

simplification: 

"��
	 = ������ + ���� $�� ∙ ��+����+����% + ������� +

											����� ⋅ �� ∙ ������	��    (20) 
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"��
	 = ������ + ���� ⋅ ��� ⋅ ��+����+���� + ������	��	��� 													+������� + ����� ⋅ [�� ⋅ ���+����+�����+

														�� ∙ ����	��	��	]    (21) 

"��
� = 	�� ⋅ (�� ⋅ ������ + ������ + �� ⋅ ���� + ����) +													�� ⋅ (�� ⋅ ��	�� + ���� + �� ⋅ �� + ��	�� + ����) (22) "��
� = 	 ���� + 	��	��    (23) 

The circuit diagrams of the modified partial product 

variables "��
	 , "��

	  and "��
	  are shown in Fig. 5. It is clear 

that "��
	  has the longest delay path. It is well known that 

the inverter, the 2-input NAND gate and the transmis-

sion gate (TG) are faster than other gates. So, it is desira-

ble to use TGs when designing the multiplexer [5-6]. As 

shown in Fig. 5 (a), the critical path delay (the dash line) 

consists of a 1-stage AND-OR-Inverter gate, a 1-stage 

inverter, and 2-stage TGs. Therefore, RBMPPG-2 just 

increases the TG delay by 1-stage compared with the 

MBE partial product of Fig. 2. 

The above discussion is only an example; the above 

technique can be applied to design any 	2�-bit RB mul-

tipliers. It eliminates the extra ECWN/4 and saves one 

RBPP accumulation stage, i.e., three XOR gate delays, 

while only slightly increasing the delay of the partial 

product generation stage. In general, an N-bit RB multip-

lier has ��/4� RBPP rows using the proposed RBMPPG-2. 

The partial product variables ��(�	�)
	 , ���	 , �(�/
)�

�  and �(�/
)�
�  can be replaced by Q�(�	�)

	 , Q��
	 , Q(�/
)�

� , and 

Q(�/
)�
� . The radix-4 Booth decoding of a PPR (PP�/


	 ) 

needs additional 3-input OR gates (Fig. 4). Therefore, the 

extra ECWN/4 is removed by the transformation of 4 par-

tial product variables Q�(�	�)
	 ,Q��

	 ,Q(�/
)�
� , Q(�/
)�

�  and one 

partial product row is saved in RB multipliers with any 

power-of-two word-length. 

 

3.2 Design of RBMPPG-2-based High-Speed RB 
Multipliers 

The proposed RBMPPG-2 can be applied to any 	2�-

bit RB multipliers with a reduction of a RBPP accumula-

tion stage compared with conventional designs. Al-

though the delay of RMPPG-2 increases by 1-stage of TG 

delay, the delay of one RBPP accumulation stage is sig-

nificantly larger than a 1-stage TG delay. Therefore, the 

delay of the entire multiplier is reduced. The improved 

complexity, delay and power consumption are very at-

tractive for the proposed design. 

A 32-bit RB MBE multiplier using the proposed RBPP 

generator is shown in Fig. 6. The multiplier consists of 

the proposed RBMPPG-2, three RBPP accumulation 

stages, and one RB-NB converter. Eight RBBE-2 blocks 

generate the RBPP (��	, ���); they are summed up by the 

RBPP reduction tree that has three RBPP accumulation 

stages. Each RBPP accumulation block contains RB full 

adders (RBFAs) and half adders (RBHAs) [7]. The 64-bit 

RB-NB converter converts the final accumulation results 

into the NB representation, which uses a hybrid parallel-

prefix/carry select adder [25] (as one of the most efficient 

fast parallel adder designs). 
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Fig. 5 The circuit diagram of the modified partial product vari-

ables: (a) Q��

�  and  Q��

� , (b) Q��

� . 

 

There are 4 stages in a conventional 32-bit RB MBE 

multiplier architecture; however, by using the proposed 

RBMPPG-2, the number of RBPP accumulation stages is 

reduced from 4 to 3 (i.e., a 25% reduction). These are sig-

nificant savings in delay, area as well as power con-

sumption. The improvements in delay, area and power 

consumption are further demonstrated in the next sec-

tion by simulation. 

Table V compares the number of RBPP accumulation 

stages in different 2� -bit RB multipliers, i.e., 8×8-bit, 

16×16-bit, 32×32-bit, 64×64-bit multipliers.  

For a 64-bit multiplier, the proposed design has 4 

RBPP accumulation stages; it reduces the partial product 

accumulation delay time by 20% compared with CRBBE-

2 multipliers. Although both the proposed design and 

RBBE-4 have the same number of RBPP accumulation 

stages, RBBE-4 is more complex, because it uses radix-16 

Booth encoding [14]. 
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TABLE V 

COMPARISON OF RBPP ACCUMULATION STAGES IN  

RBPP REDUCTION TREE 

Methods 64×64 32×32  16×16  8×8 

CRBBE-2  5 4 3 2 

RBBE-4 [14] 4 3 2 1 

Proposed 4 3 2 1 

4 PERFORMANCE EVALUATION 

The performance of various 2�-bit RB multipliers using 

the proposed RBMPPG-2 is assessed; the results are 

compared with NBBE-2, CRBBE-2 and RBBE-4 [14] mul-

tipliers that are the latest and best designs found in the 

technical literature.  

All designs of RB multipliers use the RBFA and RBHA 

of [7]. An RB-NB converter is required in the final stage 

of the RB multiplier to convert the summation result in 

RB form to a two’s complement number. It has been 

shown that the constant-time converter in [7] does not 

exist [19-21]. However, there is a carry-free multiplier 

that uses redundant adders in the reduction of partial 

products by applying on-the-fly conversion [22] in paral-

lel with the reduction and generates the product without 

a carry-propagate adder [23-24]. 
 A hybrid parallel-prefix/carry-select adder [25] is 

used for the final RB-NB converter. The NBBE-2 multip-

lier design uses the same encoder and decoder as shown 

in Fig. 2. 4-2 compressors [26-28] are used in the partial 

product reduction tree. The extra ECW in the NB multip-

lier designs is also modified as proposed in [11]. 

The multiplier designs are described at gate level in 

Verilog HDL and verified by Synopsys VCS using ran-

domly generated input patterns; the designs are synthe-

sized by the Synopsys Design Compiler using the Nan-

Gate45nm Open Cell Library. In the simulation of each 

design, a supply voltage of 1.25V and room temperature 

are assumed. Standard buffers of a 2X strength are used 

for both the input drive and the output load. The option 

for logic structuring is turned off to prevent the tool 

from changing the structure of the unit cells. The aver-

age power consumption is found using the Synopsys 

Power Compiler with back annotated switching activity 

files generated from 2500 random input vectors. 

Table VI summarizes the delay, area, power and pow-

er-delay product (PDP) of the NB and RB multiplier de-

signs; the delay, area, power and PDP metrics are com-

pared separately. 
TABLE VI 

DESIGN RESULTS OF RB MULTIPLIERS 

(USING NANGATE 45NM OPEN CELL LIBRARY) 

N-bits 
NB and RB 

Multipliers 

Delay 

(ns) 
Area(���) 

Power 

(��) 

PDP 

(pJ) 

8 NBBE-2 0.95 1210 301 0.285 

 CRBBE-2  1.20 1322 485 0.582 

 RBBE-4 [14] 1.32 1071 546 0.721 

 Proposed 1.00 1258 496 0.496 

16 NBBE-2 1.20 4055 1128 1.353 

 CRBBE-2  1.48 4165 1549 2.293 

 RBBE-4 [14] 1.62 3897 2498 4.047 

 Proposed 1.26 4004 1500 1.890 

32 NBBE-2 1.51 14420 4215 6.364 

 CRBBE-2  1.79 13925 3227 5.776 

 RBBE-4 [14] 2.09 14454 5745 12.007 

 Proposed 1.57 13589 3090 4.851 

64 NBBE-2 1.92 54120 16047 30.810 

 CRBBE-2  2.29 48624 11852 27.141 

 RBBE-4 [14] 2.47 55119 20517 50.677 

 Proposed 2.05 47903 11199 22.958 

 

Fig.6 The block diagram of a 32-bit RB multiplier using the proposed RBMPPG-2. 
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Consider the delay first (Fig. 7); compared with 

CRBBE-2, the proposed designs can reduce the delay (for 

example up to 16.6% for the case of 8×8-bit multiplier; 

for all cases of word-length, the delay is reduced by at 

least 10%. Compared with RBBE-4, the proposed designs 

can reduce the delay by up to 24.8% for the case of 

32×32-bit and the delay is reduced by at least 17% for all 

cases of word-length. The delay improvement is 

achieved by the reduced critical path due to the elimina-

tion of one RBPP accumulation stage. 

The delay of the proposed RB multipliers is slightly 

larger (approximately 5%) compared with the best NB 

multiplier, i.e., NBBE-2. However, its area and power are 

significantly lower than NBBE-2 for large word length 

designs (32-bit and 64-bit), as discussed next. 

 

 
Fig. 7 Delay comparison of the NB and RB MBE multipliers at 

different word-lengths. 

 

Compared with CRBBE-2, the RB multiplier using the 

proposed RBMPPG-2 has the smallest area for all cases 

(Fig. 8). For 8×8-bit and 16×16-bit multipliers, the area of 

RBBE-4 RB multipliers is smaller than that of the pro-

posed RB multipliers because RBBE-4 based designs 

don't require extra ECW, while the area is slightly in-

creased by the modified partial product in the proposed 

RB multipliers. Compared with NBBE-2 and RBBE-4, the 

proposed designs can reduce the area by up to 11.5% 

and 13.0%, respectively, for the case of a 64×64-bit mul-

tiplier and it is especially pronounced for large size de-

signs, thus confirming the area efficiency of the pro-

posed approach. 

Power consumptions of NB and RB multipliers are al-

so considered and compared (Fig. 9). The proposed de-

signs can reduce the power for a 64×64-bit multiplier by 

up to 30.2%, 5.5% and 45.4%, respectively, compared 

with NBBE-2, CRBBE-2, and RBBE-4. 

PDP is a commonly used metric for combined per-

formance in terms of delay and power consumption. In 

Fig. 10, the RB multipliers using the proposed RBMPPG-

2 have the smallest PDP under all cases of RB multipliers. 

Compared with CRBBE-2, the proposed designs can re-

duce the PDP by over 14% for all cases. Compared with 

RBBE-4, the proposed designs can reduce the PDP by up 

to 59.6% for the case of a 32×32-bit multiplier, and over-

all cases the proposed designs can reduce the PDP by 

over 30%. Thus, these results confirm the proposed 

RBMPP-2 can be very useful for designing area and PDP 

efficient RB multipliers. 

 

 
Fig. 8 Area comparison of the NB and RB MBE multipliers at dif-

ferent word-lengths. 

 

 
Fig. 9 Power comparison of the NB and RB MBE multipliers at 

different word-lengths. 

 

 
Fig. 10 PDP comparison of the NB and RB MBE multipliers at differ-

ent word-lengths. 

 

Although the PDP of the proposed design is larger 

than that of NBBE-2 for small sizes, it is much better for 

large word lengths. Compared with NBBE-2, the pro-
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posed designs reduce the PDP by 23.8% and 25.5% for 

32×32-bit and 64×64-bit multipliers, respectively. 

5 CONCLUSIONS 

A new modified RBPP generator has been proposed 

in this paper; this design eliminates the additional ECW 

that is introduced by previous designs. Therefore, a 

RBPP accumulation stage is saved due to the elimination 

of ECW. The new RB partial product generation tech-

nique can be applied to any 	2�-bit RB multipliers to re-

duce the number of RBPP rows from ��/4 + 1� to ��/4�. 
Simulation results have shown that the performance of 

RB MBE multipliers using the proposed RBMPPG-2 is 

improved significantly in terms of delay and area. The 

proposed designs achieve significant reductions in area 

and power consumption when the word length is at least 

32 bits. The PDP can be reduced by up to 59% using the 

proposed RB multipliers when compared with existing 

RB multipliers. Hence, the proposed RBPP generation 

method is a very useful technique when designing area 

and PDP efficient power-of-two RB MBE multipliers. 
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