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cost for reading input data from HDFS, while TD improves
the cost reduction on writing output data to HDFS.

Example: Here, we apply our cost estimation model
for selecting output jobflows generated by TD and BU
on Q17-1 as shown in Fig. 3. In TPC-H database with
20GB data, three tables are used by Q17-1, i.e., lineitem,
supplier and part, of which the sizes are 14950.4MB,
27.2MB, and 466.6MB respectively. Three constants in our
Hadoop system are measured as follows: tr = 1

151:3 ,
tw = 1

77 and tb = 1
118:8 , for reading/writing/transfer-

ing 1MB data. Then, we empirically set α = 0.5 and
γ = 0.13 × 10−6. With Eq. (6), we obtain β = 1 for JOIN1
and JOIN2 operations in Q17-1. So, with Eq. (7), we get
Dout

JOIN 1 = 2866.1MB and Dout
JOIN 2 = 1326.9MB.

As can be seen from Fig. 3(a), TD uses R2 to merge
JOIN3 with AGG, and then uses R3 to merge JOIN3+AGG
with JOIN1. So the cost reduction of TD merging is ∆T D =
∆T2 + ∆T3 = 252.67. Meanwhile, in Fig. 3(b), R1 and R2
are utilized by BU to merge JOIN1 with JOIN2, and JOIN3
with AGG respectively. The cost reduction of BU merging
is ∆BU = ∆T1 + ∆T2 = 241.76. By comparing ∆T D with
∆BU , we find TD is better than BU on Q17-1 query.

3.3.3 Further Simpli�cation

CAT should employ two merging strategies to generate
MapReduce codes twice, but other tools only need to merge
jobs once, e.g., YSmart only applies BU merging. So, one
may argue that does CAT itself incur more time cost on job
merging? With the cost estimation model, we have simpli-
fied TD and BU merging in practice. That is, CAT scans
J-Tree twice to count the number of various merging rules
by tentatively running TD and BU, rather than to produce
MapReduce codes. CAT estimates the cost reduction of TD
and BU respectively, and then selects a better one to generate
MapReduce codes automatically.

Remark: The time complexity of TD and BU strategy, as
shown in Algorithm 1, is O(n + e), where n is the number
of operators (the size of J-Tree) and e is the number of
leaf node pairs that hold IC. Since a SQL query generally
contains dozens of operators at most, the cost of scanning
J-Tree one more time indeed can be ignored, compared with
the execution time of the MapReduce jobflow.

4 EXPERIMENTAL RESULTS

In this section, we present experimental results on a deci-
sion support benchmark named TPC-H to demonstrate the
effectiveness and scalability of CAT.

4.1 Experimental Setup

Data Sets. The TPC-H benchmark (http://www.tpc.org/
tpch/) includes a suite of business oriented ad-hoc queries
and concurrent data modifications. So, we proceed to use
this benchmark to generate both data and queries for ex-
periments. Particularly, the TPC-H database consists of eight
separate tables for simulating complex business analysis ap-
plications. The command dbgen -s x provided by TPC-H
package is used to generate data sets with different volumes,
where parameter x in dbgen represents the data size (in
GB) to be generated. A large number of SQL queries of

lineitemPart
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JOIN2

AGG

lineitem

AGG

Fig. 5. The Q17-2 query.

TABLE 2
The γ values on different scales of TPC-H data

Data Size (GB) 5 10 15 20 25 30
γ (10−6) 0.53 0.27 0.18 0.13 0.10 0.06

various types and complexities are also provided by the
TPC-H benchmark. We select seven queries in TPC-H for
experiments, including Q1, Q3, Q5, Q6, Q10, Q18, and Q21,
of which detailed descriptions can be found in [18]. More-
over, we modify the Q17 query to obtain two more intricate
variants named Q17-1 and Q17-2, as shown in Fig. 2(a)
and Fig. 5 respectively. In total, nine SQL queries are used
in the following experiments.

Baseline Translators. We compare our CAT framework
with two baseline SQL-to-MapReduce translators. The first
one is YSmart [9], a correlation aware translator. The source
code of YSmart is available at http://ysmart.cse.ohio-state.
edu/. The second baseline is Hive [11], a famous data
warehouse open-source software (http://hive.apache.org/).
Note that Hive translates the operator tree to MapReduce
jobflow without any merging, i.e., one-operation-to-one-job.
CAT was coded by ourselves in Java. In the implementation
of CAT, we have carefully designed the program to avoid re-
dundant codes of every MapReduce job. This improvement
on coding leads to further performance promotions, even
for operator trees including none correlations, of which the
results will be shown later.

Hadoop System. We construct an experimental Hadoop
system with five nodes connected by a Gigabit Ethernet.
Each node comes with a quad-core Intel Xeon E5-2670
processor (2.6 GHZ), 32GB of RAM, a 300GB hard disk,
running Red Hat Enterprise Linux release 6.2. The Hadoop
version is 1.0.4. One node is used to run NameNode and
JobTracker, and other four nodes are used to run DataNode
and TaskTracker.

4.2 Parameter Analysis in Cost Estimation Model
In the proposed cost estimation model, there are three pa-
rameters to be determined α, β and γ. Since α is determined
by the locations of data blocks, it varies with different input
data and the setting of the distributed file system. In our
experiments, we empirically set α = 0.5, which indicates
every map job reads half data from the local disk and an-
other half from remote disks. As discussed in Section 3.3.1,
β can be determined by the length of projected attributes
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TABLE 3
Overall performance comparison of execution time (in seconds).

Q1 Q3 Q5 Q6 Q10 Q17-1 Q17-2 Q18 Q21
CAT 770 657↑↓ 1031 272 756 1483↓ 1012↑ 1033↑ 1075↑

YSmart 937 705 1107 292 854 2237 1084 1098 1065
Hive 937 779 1107 292 854 2773 2007 3180 2433

Note: ↑ and ↓ denote BU and TD strategies used in CAT, respectively.
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Fig. 6. The γ values as the increase of input data size.

according to Eq. (6). Therefore, the remaining task is how to
choose a reasonable value for γ.

According to Eq. (7), γ reflects the proportion between
the size of a join result and the size of projected Cartesian
product. So γ indeed is a data-dependent parameter. To
set γ for data sets provided by the TPC-H benchmark, we
randomly generate 50 join operations. These random join
operations differentiate with each other on used tables, for-
eign keys and projected attributes. For each join operation,
we obtain the size of its output data. Then, according to
two tables used by a join operation, we can compute β with
Eq. (6) and the size of Cartesian product of these two tables.
So, we can finally get the γ value for every random join
operation based on Eq. (7). We then generate six different
scales of TPC-H data from 5GB to 30GB. For each data size,
γ values of above 50 join operations are recorded, as shown
by the boxplot in Fig. 6.

As can be seen from Fig. 6, given a specific input data
size, γ values of different join operations vary slightly,
especially when the size of input data is large. We therefore
take the average values on each scale as the default settings
for γ, as tabulated in Table 2. Note that the size of Cartesian
product is often tremendous (e.g., PB scale on TPC-H) and
the sizes of join results are often in MB scale. So, the γ values
in our experiments are normalized by 10−6. Furthermore, it
is obvious that the γ value will change with the used data
sets. The suggested γ values in Table 2 is just for TPC-H
data. However, the experimental technique used here, i.e.,
exploiting random join operations, probably provides a
feasible way to determine γ for other data sets.

4.3 The Comparison of Different Translators

Here, we present comparison results among three transla-
tors (i.e., CAT, YSmart, and Hive). We test nine queries on
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Fig. 7. Deep comparison into every jobs in MapReduce jobflow.

20GB TPC-H data set. For each query, three translators are
employed to obtain MapReduce jobflows respectively. The
different jobflows are then deployed in our Hadoop system,
and the execution time returned by the system is used as the
performance measure. Obviously, a shorter execution time
indicates a better performance. Table 3 lists the evaluation
results of the three translators on 9 queries, where the marks
↑ and ↓ denote the jobflow is returned by BU and TD
respectively, two marks appearing simultaneously indicates
BU and TD return exactly the same jobflow, and no mark
means the query does not contain any correlated operator.

We can obtain the following observations from Table 3.
Firstly, CAT outperforms YSmart and Hive in most cases.
For some more complex queries such as Q17-1, Q17-2, and
Q18, CAT takes the lead with a wide margin, compared
with YSmart. For instance, for query Q17-1, CAT has a
151% speedup and a 187% speedup over YSmart and Hive,
respectively. Secondly, from marked arrows, we can see
that BU and TD strategies are indeed suitable for different
queries, which validates the necessity of deploying two
strategies simultaneously in CAT. Since the input data is
usually much larger than the output data, BU is seemingly
invoked more than TD. Thirdly, In Table 3, there are 4
queries including Q1, Q5, Q6 and Q10 that contain none
correlated operators. So, the MapReduce jobflows translated
by three tools should be the same as the original operator
tree. In this case, YSmart and Hive have the same execution
times, since they generate the identical codes of MapReduce
jobflows. However, CAT is still superior to other two trans-
lators, which attributes to the code optimization in CAT.

For deep comparison, we decompose the total execution
time into that of each job in the MapReduce jobflow. Fig. 7
depicts the comparison results on five queries with corre-
lated operators. As can be seen, CAT always contains the
least jobs in its generated MapReduce jobflow. This demon-
strates the effectiveness of the proposed relaxed merging



2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2700842, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, DECEMBER 2014 9

TABLE 4
Comparison of the size of data interacting with HDFS (GB).

Q17-1 Q17-2
Read Write Total Read Write Total

CAT 30.5 0.08 30.58 15.4 2×10−5 15.4
YSmart 26.1 5.4 31.50 15.5 0.11 15.6

Hive 34.1 3.7 37.8 33.1 2.7 35.8

rules as well as two strategies. Two typical examples are
Q17-1 and Q17-2. In particular, Q17-1 and Q17-2 benefit
from TD merging strategy and GJFC, respectively. Mean-
while, the first job (denoted as “Job 1”) in CAT and YSmart
usually consumes the longest time, because it needs to scan
the whole data set to prepare data for the successive jobs. In
the case of one-operation-to-one-job translation (e.g., Hive),
there often exist several jobs for reading data from HDFS,
which significantly degrades its efficiency.

The I/O cost is often much more expensive than the
computational cost. In a cloud system, reading and writing
data from/to HDFS will incur substantial overheads, which
largely dominates applications’ execution time [22]. Hence,
we are interested in the size of data interacting with HDFS
by the generated MapReduce jobflows. We select Q17-1 and
Q17-2 running on 20GB data for exploration. Table 4 lists
the comparative results in terms of data size in GB. As we
can see, CAT generally has the least data interacting with
HDFS, compared with Hive and YSmart. In the case of
without any merging in Hive, the size of data interacting
with HDFS is considerably large, e.g., approximatively dou-
bled for the Q17-2 query. By comparing CAT with YSmart,
though they read similar scale of data from HDFS, the data
volume writing to HDFS is significantly reduced by CAT.
This is an outstanding advantage of CAT, since writing data
to a disk is often slower than reading data from a disk.

4.4 Scalability on Growing Data Volumes
To demonstrate CAT’s scalability on growing input data
volumes, we used the dbgen command to generate TPC-H
data set in different scales. In the final experiment, we select
four queries, i.e., Q3, Q17-1, Q17-2 and Q18, and vary the
volumes of input data from 5GB to 30GB with a step of 5.

Fig. 8 compares the execution times of queries on three
translators. As can be observed, Hive consistently consumes
the most execution times, and the gaps often widen as the
increase of data volumes. In queries Q3, Q17-2 and Q18,
CAT is slightly better than YSmart in all cases. However, the
performance is improved remarkably by CAT on Q17-1,
especially as the growing of data volumes. As discussed
before, employing TD merging strategy can provide more
simplified MapReduce jobflow for Q17-1. So, the consid-
erable performance improvement on Q17-1 can in turn
illustrate the necessity of integrating TD strategy into CAT.

5 RELATED WORK

Despite its popularity, MapReduce has also been the object
of severe criticism [23], mainly due to its performance
limitations resulting from complex query processing tasks.
Meanwhile, optimizing query processing in MapReduce is
much more challenging than that in traditional database
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Fig. 8. Comparison on the scalability with growing data volumes.

systems [9]. In the literature, the existing query optimization
methods for MapReduce can fall into two categories, one
aims to enhance the kernel of MapReduce, and the other
targets at translating a query plan to a more simplified
MapReduce workflow but without modification of the un-
derlying MapReduce model.

The methods in the first category usually modify
MapReduce to overcome its weaknesses. For instance,
HadoopDB [24] used parallel DBMS instead of HDFS to im-
prove the performance of accessing the input data. MapRe-
duce Online [25] added pipelined job interconnections to
reduce the communication cost. HaLoop [26] employed
the loop-aware processing technique to make MapReduce
support iterative analytical applications such as PageRank,
Kmeans, and so on. EARL [27] provided quick retrieval of
approximate results for analytical queries in MapReduce,
without processing the entire input data. Since these nu-
merous research do not touch upon SQL-to-MapReduce
translation, it is difficult to include all the related work in,
and we hope the cited reviews [2], [23] can point to some of
those missing references.

Our research belongs to the second category that at-
tempts to translate the query into the optimized MapRe-
duce programs. Thus, without modification of MapReduce
framework, its query processing performance can also be
improved. On the basis of many SQL-like declarative lan-
guages and coarse translators, including Hive [11], Pig
Latin [12], Jaql [13], Tenzing [14], and SCOPE [15], much
work has been done recently on further improving the
performance of SQL-to-MapReduce translators. Up to now,
three important factors have been considered. The first one
is data storage structures and data indexes. For example,
Hadoop++ [28] added indexing mechanism and RCFile [29]
provided a column-wise structure to reduce I/O costs. The
second factor is intra-SQL correlations. The method in [30]
adopted correlations among join operations for optimiza-
tions. Then, YSmart [9] defined a general correlation for
various operations. The third factor is the cost of MapRe-
duce jobs. MRShare [16] took a cost model to optimize both
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map input and output sharing in MapReduce. Starfish [31]
employed a cost model to determine the optimal numbers
of map and reduce sub-tasks.

To sum up, though the data storage structure and index
are not been considered in this paper, which lays for future
research, our work in this paper just aims to fill the crucial
void for combining intra-SQL correlations and the cost
model.

6 CONCLUSION

This paper presents a SQL-to-MapReduce translator named
CAT which adopts the cost model for MapReduce jobflow
optimization. First, CAT considers two kinds of intra-SQL
correlations, i.e., GJFC and IC, to obtain four looser merging
rules. Second, CAT integrates TD and BU merging strate-
gies simultaneously to automatically generate much more
efficient MapReduce programs for complex queries. Third,
a cost estimation model is presented for CAT to guide its
selection of a better MapReduce jobflows auto-generated by
two merging strategies. Thorough experiments and compar-
isons validate the effectiveness and scalability of CAT.

ACKNOWLEDGMENTS

This research was partially supported by National Key Basic
Research Program of China under Grant 2010CB328104,
National Natural Science Foundation of China under Grants
61370207 and 61103229, and National High-tech R&D Pro-
gram of China (863 Program) under Grant 2013AA013503.

REFERENCES

[1] E. E. Schadt, M. D. Linderman, J. Sorenson, L. Lee, and G. P.
Nolan, “Computational solutions to large-scale data management
and analysis,” Nature Reviews Genetics, vol. 11, no. 9, pp. 647–657,
2010.

[2] F. Li, B. C. Ooi, M. Ozsu, and S. Wu, “Distributed data manage-
ment using mapreduce,” ACM Computing Survey, 2013.

[3] J. Dean and S. Ghemawat, “MapReduce: simplified data process-
ing on large clusters,” Communications of the ACM, vol. 51, no. 1,
pp. 107–113, 2008.

[4] T. White, Hadoop: The Definitive Guide: The Definitive Guide.
O’Reilly Media, 2009.

[5] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: dis-
tributed data-parallel programs from sequential building blocks,”
ACM SIGOPS Operating Systems Review, vol. 41, no. 3, pp. 59–72,
2007.

[6] A. W. Services, “Amazon elastic compute cloud (2014),” URL:
http://aws.amazon.com/ec2.

[7] A. S. Aiyer, M. Bautin, G. J. Chen, P. Damania, P. Khemani,
K. Muthukkaruppan, K. Ranganathan, N. Spiegelberg, L. Tang,
and M. Vaidya, “Storage infrastructure behind facebook messages:
Using hbase at scale.” IEEE Data Eng. Bull., vol. 35, pp. 4–13, 2012.

[8] J. Lin and D. V. Ryaboy, “Scaling big data mining infrastructure:
the twitter experience.” SIGKDD Explorations, vol. 14, pp. 6–19,
2012.

[9] R. Lee, T. Luo, Y. Huai, F. Wang, Y. He, and X. Zhang, “Ysmart:
Yet another sql-to-mapreduce translator,” in Distributed Computing
Systems (ICDCS), 2011 31st International Conference on. IEEE, 2011,
pp. 25–36.

[10] F. Färber, S. K. Cha, J. Primsch, C. Bornhövd, S. Sigg, and
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[28] J. Dittrich, J.-A. Quiané-Ruiz, A. Jindal, Y. Kargin, V. Setty, and
J. Schad, “Hadoop++: Making a yellow elephant run like a cheetah
(without it even noticing),” Proceedings of the VLDB Endowment,
vol. 3, no. 1-2, pp. 515–529, 2010.

[29] Y. He, R. Lee, Y. Huai, Z. Shao, N. Jain, X. Zhang, and
Z. Xu, “Rcfile: A fast and space-efficient data placement structure
in mapreduce-based warehouse systems,” in Data Engineering
(ICDE), 2011 IEEE 27th International Conference on. IEEE, 2011,
pp. 1199–1208.

[30] F. N. Afrati and J. D. Ullman, “Optimizing joins in a map-reduce
environment,” in Proceedings of the 13th International Conference on
Extending Database Technology. ACM, 2010, pp. 99–110.

[31] H. Herodotou and S. Babu, “Profiling, what-if analysis, and cost-
based optimization of mapreduce programs,” Proc. of the VLDB
Endowment, vol. 4, no. 11, pp. 1111–1122, 2011.



2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2700842, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, DECEMBER 2014 11

Zhiang Wu received his Ph.D. degree in Com-
puter Science from Southeast University, China,
in 2009. He is currently an associate profes-
sor of Jiangsu Provincial Key Laboratory of E-
Business at Nanjing University of Finance and
Economics. He is the member of the ACM, IEEE
and CCF. His recent research interests include
distributed computing, social network analysis
and data mining.

 

Aibo Song received the M.S.degree from Shan-
dong University of Science and Technology,
Qingdao,the Ph.D. degree in computer applica-
tion technology from Southeast University, Nan-
jing, in 1996 and 2003, respectively. He is cur-
rently an associate professor in the School of
Computer Science and Engineering, Southeast
University. His current research interests include
cloud computing and big data processing.

Jie Cao received his Ph.D. degree from South-
east University, China, in 2002. He is currently
a professor and the dean of School of Informa-
tion Engineering at Nanjing University of Finance
and Economics. He has been selected in the
Program for New Century Excellent Talents in
University and awarded with Young and Mid-
aged Expert with Outstanding Contribution in
Jiangsu province. His main research interests
include cloud computing and data mining.

 

Junzhou Luo received the M.S. and Ph.D. de-
grees in computer science from Southeast Uni-
versity, Nanjing, in 1992 and 2000, respectively.
He is currently a professor and the dean of the
School of Computer Science and Engineering,
Southeast University. His current research in-
terests include next generation network archi-
tecture, cloud computing, network security, and
wireless network.

 

Lu Zhang received his Ph.D. degree in Com-
puter Science from Southeast University, China,
in 2012. He is currently a lecturer of Jiangsu
Provincial Key Laboratory of E-Business at Nan-
jing University of Finance and Economics. He
is the member of CCF. His recent research in-
terests include distributed computing, social net-
work analysis and data mining.


