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Fig. 2. Overview of the eyes off the road (EOR) detection algorithm.

result in drastic changes in the facial features (e.g., pupil and
eye corners) to be tracked; (3) the system must be accurate for
a variety of people across multiple ethnicities, genders, and age
ranges. Moreover, it must be robust to people with different
types of glasses. To address these issues, this paper presents a
low-cost, accurate, and real-time system to detect EOR. Note
that EOR detection is only one component of a system for
detecting and alerting distracted drivers.

Fig. 2 illustrates the main components of our system. The
system collects video from a camera installed on the steering
wheel column and tracks facial features, see Fig. 1. Using a 3D
head model, the system estimates the head pose and gaze direc-
tion. Using 3D geometric analysis, our system introduces a re-
liable method for EOR estimation. Our system works at 25 FPS
in MATLAB and does not require any specific driver dependent
calibration or manual initialization. It supports glasses (includ-
ing sunglasses) and operates during the day and night. In addi-
tion, the head pose estimation algorithm uses a 3D deformable
head model that is able to handle driver facial expressions (i.e.,
yawning and talking), allowing reliable head pose estimation by
decoupling rigid and non-rigid facial motion. Experiments in a
real car environment show the effectiveness of our system.

II. PREVIOUS WORK

Driver monitoring has been a long standing research problem
in computer vision. It is beyond the scope of the paper to
review all existing systems, but we provide a description of the
most relevant work in academia and industry. For a complete
overview of existing systems, we refer the reader to [14].

Broadly speaking, there are two approaches to estimate gaze
direction: Techniques that only use the head pose and those that
use the driver’s head pose and gaze. For systems that rely only
on head pose estimation, an extensive report on the topic can be
found in [34]. Lee et al. [30] proposed an algorithm for yaw and
pitch estimation based on normalized histograms of horizontal
and vertical edge projections combined with an ellipsoidal
face model and a Support Vector Machine (SVM) classifier
for gaze estimation. Chutorian et al. [33] proposed a driver
head pose estimation algorithm based on Localized Gradient
Orientation (LGO) histograms in combination with Support
Vector Regressors (SVR). The algorithm was further developed
in [35] by introducing a head tracking module built upon 3D
motion estimation and a mesh model of the driver’s head.

Recently, Rezaei and Klette [37] introduced a new algorithm
for distracted driving detection using an improved 3D head
pose estimation and Fermat-point transform. All the described
approaches reported to work in real time.

Systems that use head pose and gaze estimation are grouped
into hardware and software based approaches. Ishikawa et al.
[25] proposed a passive driver gaze tracking system using
Active Appearance Models (AAMs) for facial feature tracking
and head pose estimation. The driver’s pupils were also tracked
and a 3D eye-model was used for accurate gaze estimation from
a monocular camera. Smith et al. [39] relied on motion and
color statistics to robustly track driver head and facial features.
Using the assumption that the distance from the driver’s head to
the camera is fixed, the system recovered the three dimensional
gaze of the eyes using a simplified head model without any
calibration process.

Hardware-based approaches to driver head pose and gaze
estimation rely on near-infrared (IR) illuminators to generate
the bright pupil effect [7], [26], [27], [32]. The bright pupil
effect allows for low-cost pupil detection, which simplifies
localization of the driver’s pupil using only computer vision
techniques. Ji and Yang [26], [27] described a system for driver
monitoring using eye, gaze, and head pose tracking based on the
bright pupil effect. The pupils are tracked using a Kalman filter;
the system uses image features around the pupil in combination
with a nearest neighbor classifier for head pose estimation. The
gaze is estimated by extracting the displacement and direction
from the center of the pupil to the glint and using linear
regression to map to nine gaze directions. This system is not
person-independent and must be calibrated for every system
configuration and driver. Batista [7] used a similar system but
provided a more accurate gaze estimation using ellipse fitting
for the face orientation. These near-IR illumination systems
work particularly well at night, but performance can drop
dramatically due to contamination introduced by external light
sources and glasses [8], [21]. While the contamination due to
artificial lights can easily be filtered with a narrow band pass
filter, sunlight contamination will still exist. Additionally, the
hardware necessary to generate the bright eye effect will hinder
system integration into the car dashboard.

In industry, systems based on near-IR are the most common.
The Saab Driver Attention Warning System [6] detects visual
inattention and drowsy driving. The system uses two miniature
IR cameras integrated with Smart Eye technology to accurately
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Fig. 3. Camera and IR illuminator position.

estimate head pose, gaze, and eyelid status. When a driver’s
gaze is not located inside the primary attention zone (which
covers the central part of the frontal windshield) for a prede-
fined period, an alarm is triggered. Nevertheless, no further
details about the performance of the system in real driving
scenarios were reported. Toyota has equipped their high-end
Lexus models with their Driver Monitoring System [24]. The
system permanently monitors the movement of the driver’s
head when looking from side to side using a near-IR camera
installed on the top of the steering wheel column. The system
is integrated into Toyota’s pre-crash system, which warns the
driver when a collision is probable.

Another commercial system is FaceLAB [2], a stereo-based
eye tracker that detects eye movement, head position and rota-
tion, eyelid aperture and pupil size. FaceLAB uses a passive
pair of stereo cameras mounted on the car dashboard. The
system has been used in several driver assistance and inattention
systems, such as [17]–[19]. However, stereo-based systems
are too expensive to be installed in mass-produced cars and
they require periodic re-calibration because vibrations cause
the system calibration to drift over time. Similarly, Smart Eye
[3] uses a multicamera system that generates 3D models of
the driver’s head, allowing it to compute her gaze direction,
head pose, and eyelid status. This system has been evalu-
ated in [5]. Unfortunately, it is prohibitively expensive for
mass dissemination in commercial cars and it imposes strong
constraints with respect to the necessary hardware to be in-
stalled. As a result, it is unfeasible to install this system in
regular cars. Other commercial systems include the ones devel-
oped by Delphi Electronics [15] and SensoMotoric Instruments
GmbH [4].

III. SYSTEM DESCRIPTION

This section describes the main components of our system.
There are six main modules: Image acquisition, facial feature
detection and tracking, head pose estimation, gaze estimation,
EOR detection, and sunglasses detection. Fig. 2 shows the
system block diagram and algorithm flow.

A. Image Acquisition

The image acquisition module is based on a low-cost CCD
camera (in our case, a Logitech c920 Webcam) placed on top

Fig. 4. a) Mean landmarks, x 0, initialized using the face detector. Black
outline indicates face detector. b) Manually labeled image with 51 landmarks.

of the steering wheel column, see Fig. 3. The CCD camera
was placed over the steering wheel column for two reasons:
(1) It facilitates the estimation of gaze angles, such as pitch,
which is relevant for detecting when the driver is texting on a
phone (a major threat to safety). (2) From a production point
of view, it is convenient to integrate a CCD camera into the
dashboard. On the downside, when the wheel is turning there
will be some frames in which the driver’s face will be occluded
by the steering wheel.

For night time operation, the system requires an illumination
source to provide a clear image of the driver’s face. Moreover,
the illumination system cannot impact the driver’s vision. To
this end, an IR illuminator was installed on the car dashboard,
see Fig. 3. Note that the proposed system does not suffer from
the common drawbacks of near-IR based systems [7], [26],
[27], because it does not rely on the bright pupil effect. To
adapt our CCD camera to IR illumination, it was necessary
to remove the IR filter from the CCD camera, making the
CCD more sensitive to IR illumination (i.e., sunlight, artificial
illumination). As shown in Fig. 5, this effect is not noticeable
in real driving scenarios.

B. Facial Feature Detection and Tracking

Parameterized Appearance Models (PAMs), such as Ac-
tive Appearance Models (e.g., [12], [13]) and Morphable
Models [9], are popular statistical techniques for face tracking.
They build an object appearance and shape representation by
computing Principal Component Analysis (PCA) on a set of
manually labeled data. Fig. 4(a) illustrates an image labeled
with p landmarks (p = 51 in this case). Our model includes two
extra landmarks for the center of the pupils. However, there
are several limitations of PAMs that prevent to use them for
detection and tracking in our system. First, PAMs typically
optimize many parameters (about 50–60), which makes them
very prone to local minima. Second, PAMs work very well
for person-specific subjects but do not generalize well to other
untrained subjects because they use a linear model of shape and
appearance [13]. Third, the shape model typically cannot model
asymmetric expressions (e.g., one eye open and another closed,
or an asymmetric smile). This is due to the fact that in most
training datasets, these expressions do not occur.

To address the limitations of PAMs, Xiong and De la Torre
proposed the Supervised Descent Method (SDM) [44], which
is a discriminative method for fitting PAMs. There are two
main differences from the traditional PAMs. First, it uses a
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non-parametric shape model that is better able to generalize to
untrained situations (e.g., asymmetric facial gestures). Second,
SDM uses a more complex representation (SIFT descriptor [31]
around the landmarks). This provides a more robust represen-
tation against illumination, which is crucial for detecting and
tracking faces in driving scenarios.

Given an image d � Rm× 1 of m pixels, d(x) � Rp× 1 (see
footnote for notation)1 indexes p landmarks in the image. h
is a non-linear feature extraction function (in our case SIFT
features) and h(d(x)) � R128p× 1 because SIFT features have
128 dimensions. During training, we will assume that the
correct p landmarks are known, and we will refer to them as
x � [see Fig. 4(b)]. Also, to reproduce the testing scenario, we
ran the face detector on the training images to provide an initial
configuration of the landmarks (x0), which corresponds to an
average shape [see Fig. 4(a)]. Then, face alignment can be
formulated as minimizing the following function over Δx

f(x0 +Δx) = � h (d(x0 +Δx)) Š � � � 22 (1)

where � � = h(d(x � )) represents the SIFT values in the manu-
ally labeled landmarks. In the training images, � � and Δx are
known.

One could use Newton’s method to minimize Eq. (1).
Newton’s method makes the assumption that a smooth function,
f(x), can be well approximated by a quadratic function in a
neighborhood of the minimum. If the Hessian is positive defi-
nite, the minimum can be found by solving a system of linear
equations. The Newton updates to minimize Eq. (1) would be:

xk = xkŠ1 Š 2H Š1J�
h (� kŠ1 Š � � ) (2)

where � kŠ1 = h(d(xkŠ1)) is the feature vector extracted at the
previous set of landmark locations, xkŠ1, H and Jh are the
Hessian and Jacobian evaluated at xkŠ1. Note that the SIFT op-
erator is not differentiable and minimizing Eq. (1) using first or
second order methods requires numerical approximations (e.g.,
finite differences) of the Jacobian and the Hessian. However,
numerical approximations are very computationally expensive.
Furthermore, � � is known in training but unknown in testing.
SDM addresses these issues by learning a series of descent
directions and re-scaling factors (done by the Hessian in the
case of Newton’s method) such that it produces a sequence of
updates (xk+1 = xk +Δxk) starting from x0 that converges
to x � in the training data. That is, SDM learns from training
data a sequence of generic descent directions {R k} and bias
terms { bk}

xk = xkŠ1 + R kŠ1� kŠ1 + bkŠ1 (3)

such that the succession of xk converges to x � for all images in
the training set. For more details on SDM, see [44].

1Bold capital letters denote a matrix X , bold lower-case letters a column
vector x . x i represents the ith column of the matrix X . xij denotes the scalar
in the ith row and jth column of the matrix X . All non-bold letters represent
scalars. 1m×n, 0m×n � Rm×n are matrices of ones and zeros. I n � Rn×n

is an identity matrix. �x�p = p
��

i
|xi|p and �X �2F =

�
ij

x2
ij denote

the p-norm of a vector and the Frobenius norm of a matrix, respectively.

Fig. 5. SDM landmark detection under different poses, illuminations, and
ethnicities.

Fig. 5 illustrates several examples of how the tracker works
in real driving scenarios. The face tracking code is available at
http://www.humansensing.cs.cmu.edu/intraface/.

C. Head Pose Estimation

In real driving scenarios, drivers change their head pose and
facial expression while driving. Accurately estimating driver’s
head pose in complex situations is a challenging problem. In
this section, a 3D head pose estimation system is proposed to
decouple rigid and non-rigid head motion.

The head model is represented using a shape vector, q �
R(3·49× 1), concatenating the x, y, z coordinates of all vertices.
The deformable face model is constructed by computing PCA
[9] on the training dataset from Cao et al. [10], which contains
aligned 3D face shapes that have variation in both identity and
expression. A new 3D shape can be reconstructed as a linear
combination of eigenvectors v i and the mean shape q̄

q = q̄ +
�

i

βiv i = q̄ + V β. (4)

Given 49 tracked 2D facial landmarks (pk � R2× 1, k =
1, . . . , 49, excluding the pupil points) from the SDM tracker, we
simultaneously fit the head shape and head pose by minimizing
the difference between the 2D landmarks and the projection
of the corresponding 3D points from the model. In this paper,
we assume a weak-perspective camera model [43], also called
scaled orthographic projection. The fitting error is defined as

E =
1
2

K=49�
k=1

���sP
�

RL kq + t �
headp

�
Š pk

���
2

2
(5)

where k is the index of the k-th facial landmark, P � R2× 3 is a
projection matrix, L k � R3× (3·49) is the selection matrix that
selects the vertex corresponding to the k-th facial landmark,
R � R3× 3 is a rotation matrix defined by the head pose angles,
t �

headp
� R3× 1 is a 3D translational vector of the driver’s head

relative to the camera’s optical center, and s is a scale factor
approximating the perspective image formation. The overall
fitting error, E, which is the total fitting error of all landmarks,
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Fig. 6. Examples of 3D reconstruction and head pose estimation in the car
environment.

is minimized with respect to the pose parameters (R , t �
headp

, s)
and shape coefficients, β, using an alternating optimization
approach. We alternate between the estimation of the rigid
parameters, R and s, and the non-rigid parameter β. These
steps monotonically reduce the fitting error E, and because the
function is bounded below, we converge to a critical point, see
[45]. Fig. 6 shows four examples of the head pose estimation
and 3D head reconstruction.

Translation Mapping: In the method described above, the
head translation vector, t �

headp
, is computed in pixels. To com-

pute the EOR estimation using the geometry of the scene, we
need to map pixels to centimeters, obtaining the vector t �

head.
This mapping is performed using a data-driven approach. For
a fixed focal length, we collected a set of translation vectors
in pixels and their corresponding real length in centimeters. A
linear system is solved to obtain the unit mapping

t �
head = At �

headp
+ b (6)

where A � R3× 3 and b � R3× 1 are linear coefficients to solve.
It is worth noting that this affine mapping was done outside the
car environment and generalized well for several cameras of the
same model (Logitech c920). In order to compute this mapping,
we used three different individuals that were not in the testing
set described in the experimental section.

Angular Compensation: As stated above, the head pose esti-
mation algorithm is based on the weak-perspective assumption,
hence we use a scaled orthographic projection. This assumption
is accurate when the driver’s head is near the visual axis of the
camera. However, in the car scenario, due to several factors,
such as the driver’s height, seating position, and the fixed tilt
of the camera, the driver’s head may not always be close to the
visual axis.

Fig. 7 shows three different positions of the driver’s head
and their corresponding images generated by the camera, pro-
duced by a perspective projection, and a scaled orthographic
projection, respectively. As we can see, the camera view and
the scaled orthographic projection image match in the position
b, where the driver’s head is aligned with the camera visual axis.
For positions a and c, camera images and weak perspective
images differ due to a translation with respect to the camera
visual axis. As a result, the head pose estimation algorithm
will introduce an offset caused by the driver’s head position.
To correct this offset, it is necessary to introduce a heuristic

Fig. 7. Difference between camera image and weak perspective projection
image caused by translation of the driver’s head with respect the camera virtual
axis. Top row (ac, bc, and cc) shows the different images generated in the
camera for positions a, b, c. Bottom row shows the weak perspective projection
images using the same translations. When the face is near the visual axis (blue
rectangle), the weak perspective projection image is similar to the real image
captured by the camera. When the face is off the visual axis, there will be
discrepancy between these two images.

compensation for the head rotation. Fig. 7 shows the heuristic
compensation computed for a lateral translation that affects
the estimation of the yaw angle. A similar compensation is
computed for the pitch angle for a vertical translation. As a
result, the yaw and pith angles estimated by our head pose
algorithm in the car environment are given by

φ�head
yaw = γyaw Š αyaw (7)

φ�head
pitch = γpitch Š αpitch (8)

where γyaw and γpitch are the original yaw and pitch angles
computed by our algorithm, and αyaw and αpitch are the corre-
sponding compensation angles. Note that no compensation was
introduced for the roll angle, our tests showed that the roll angle
was less sensitive to translations with respect to the camera
virtual axis.

D. Gaze Estimation

The driver’s gaze direction provides crucial information as
to whether the driver is distracted or not. Gaze estimation has
been a long standing problem in computer vision [23], [25].
Most existing work follows a model-based approach to gaze
estimation that assumes a 3D eye model, where the eye center
is the origin of the gaze ray. In this paper, we used a similar
model (see Fig. 8). We make three main assumptions: First, the
eyeball is spherical and thus the eye center is at a fixed point
(rigid point) relative to the head model; Second, all the eye
points, including the pupil, are detected using the SDM tracker
described in the previous section. Note that more accurate pupil
center estimates are possible using other techniques such as
the Hough transform; Third, the eye is open and therefore all
the eye contour points can be considered rigid. Our algorithm
has two main parts: (1) Estimate the 3D position of the pupil
from the rigid eye contour points, and (2) estimate the 3D gaze
direction from the pupil position and the eye center.

The 3D position of the pupil is computed as follows:

1) Triangulate the eye contour points in 2D and determine
which triangle mesh contains the pupil. See Fig. 8.
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Fig. 8. 3D Gaze estimation. We first triangulate the eye contour points to
get the eye mesh. The tracked 2D pupil (black dot) landmark is assigned to the
closest triangle (blue mesh). Using the correspondences between the 2D and the
3D mesh, the 3D pupil point is computed in the barycentric coordinate system
of the triangle. The 3D gaze direction can then be determined using the eye
center point and the pupil point.

2) Compute the barycentric coordinates of the pupil inside
the triangle mesh that contains the pupil.

3) Apply the barycentric coordinates to the corresponding
eye contour points in 3D to get the 3D position of pupil.

After we obtain the 3D position of the pupil, the gaze
direction can be simply estimated as the ray that goes through
the 3D eye center and the 3D pupil. We can thus obtain the gaze
angles.

Finally, to compute the gaze angles with respect to the cam-
era coordinate system, Φ�gaze = (φ�gaze

yaw , φ�gaze
pitch), it is necessary

to rotate the estimated gaze angles using the compensated head
pose rotation matrix.

E. Eyes Off the Road Detection

The EOR estimation is based on a 3D ray tracing method that
uses the geometry of the scene as described in Fig. 9. Our EOR
estimation algorithm computes the point where the driver’s 3D
gaze line, vgaze in Fig. 9, intersects the car windshield plane
Π. If the intersection point lies outside of the defined on-the-
road area, an alarm is triggered. In our approach, we only
used the gaze from the driver’s left eye since it suffers from
less occlusion (only short head movements to check the driver
mirror) than the right eye.

To compute the 3D gaze vector, we need the 3D position
of the eye and the gaze direction (gaze yaw and pitch angles).
Let O� and O be the origins of the camera coordinate system,
(x�, y�, z�), and the world coordinate system, (x, y, z), respec-
tively. Both systems are measured in centimeters. The world
coordinate system is the camera coordinate system rotated
by the camera tilt γtilt, it follows that O = O�. The relation
between the point P , in the world coordinate system, and
the point P � in the camera coordinate system is expressed
by P = R c/wP �, where R c/w is the rotation matrix from
the camera coordinate system to the world coordinate system.
This rotation matrix is defined by the camera tilt, γtilt, see
Fig. 9.

The gaze direction algorithm described in Section III-D,
provides the driver’s gaze direction, Φ�gaze = (φ�gaze

yaw , φ�gaze
pitch),

Fig. 9. Geometric analysis for EOR estimation.

with respect to the camera coordinate system. We can build the
3D gaze vector, u�

gaze, as

u�
gaze =

⎡
⎢⎢⎢⎣

cos
�

φ�gaze
pitch

�
· sin

�
φ�gaze

yaw
�

sin
�

φ�gaze
pitch

�

Š cos
�

φ�gaze
pitch

�
· cos

�
φ�gaze

yaw
�

⎤
⎥⎥⎥⎦ . (9)

Using the 3D head coordinates, q in Eq. (4), our head pose
algorithm estimates the 3D position of the driver’s head and
eyes with respect to the camera coordinate system, vectors
t �

head and t �
eye respectively. Hence, the 3D gaze line can be

expressed using the parametric 3D line form as

vgaze = R c/w
�
t �

eye + λu�
gaze

�
. (10)

Finally, the intersection point, Pinter, is given by the inter-
section of the gaze vector, vgaze, with the windshield plane Π.
The equation of the windshield plane Π in the world coordinate
system is estimated using least squares plane fitting.

F. Sunglasses Detector

Our system works reliably with drivers of different ethnici-
ties wearing different types of glasses. However, if the driver
is wearing sunglasses, it is not possible to robustly detect
the pupil. Thus, to produce a reliable EOR estimation in this
situation, the vector vgaze will be computed using the head pose
angles.

The sunglasses detection pipeline is shown in Fig. 10. First,
our system extracts SIFT descriptors from the area of the eyes
and eyebrows, h1 , . . . , hn , and concatenates them to build the
feature vector � . Second, a linear Support Vector Machine
(SVM) classifier is used to estimate if the driver is wearing
sunglasses. The SVM classifier has been trained using 7500
images the databases CMU Multi-PIE face database [20] and
the PubFig database [28]. The classifier obtained 98% accuracy
in the test set, which was composed of 600 images evenly
distributed between positive and negative classes.



2020 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 16, NO. 4, AUGUST 2015

Fig. 10. Sunglasses classifier pipeline.

IV. EXPERIMENTS

This section evaluates the accuracy of our system in different
tasks. First, we compare our head pose estimation to other
state-of-the-art approaches. Second, we report the performance
of our EOR detection system in videos recorded in the car
environment. Finally, we evaluate the robustness of the head
pose estimation algorithm to extreme facial deformations.

A. Head Pose Estimation

To evaluate our 3D-based head pose estimation algorithm,
we used the Boston University (BU) dataset provided by
La Cascia et al. [11]. This dataset contains 45 video sequences
from 5 different people with 200 frames in each video. As
described in the previous sections, facial feature detection is
performed in each input frame. Using the 2D tracked land-
marks, we estimated the 3D head orientation and translation.
The distance units were pre-normalized to ensure that transla-
tion metrics were in the same scale.

We compared our head pose estimation system with de-
formable 3D head model (3D-Deform) against four other
methods in the literature. Table I shows the Mean Absolute
Error (MAE) of the head pose angles for different algorithms.
La Cascia et al. [11] reported a method that used a manually
initialized cylindrical model and recursive least squares opti-
mization. Sung et al. [40] proposed a method that was based
on active appearance model [12] and cylinder head models.
Valenti et al. [42] used a cylindrical model and a template
update scheme to estimate model parameters on-the-fly. As
Table I shows, our method based on a deformable 3D face
model is more accurate than these three methods. Finally,
Saragih et al. [38] proposed an algorithm based on a 3D
version Constrained Local Model (CLM) which estimates the
pose parameters by maximizing the local patch response us-
ing linear SVMs with logistic regressors. This method ob-
tained better MAE than our method, however this algorithm
requires a recalibration procedure using the ground truth
when a large drift occurs, which is infeasible in the real car
environment.

To demonstrate the robustness of our head pose estima-
tion system against expressions, we conducted experiments in
the car environment with different expressions settings. See
Section IV-C for details. Fig. 11 illustrates how our head pose
estimation algorithm works in the car environment. We can see
how the yaw angle of the driver’s head pose varies as the driver
moves his head.

TABLE I
HEAD POSE ESTIMATION RESULTS ON THE BU DATASET,

MEASURED IN MAE (MEAN ABSOLUTE ERROR)

Fig. 11. Head pose estimation, yaw, pitch, and roll angles. Section a: Driver
looks ahead. Section b: Driver looks at the driver mirror. Section c: Driver
recovers initial position.

Fig. 12. Evaluation protocol for the EOR detection.

B. Eyes Off/On the Road Estimation

This section reports experimental results of our EOR sys-
tem in a real car scenario. First, we provide details of the
evaluation protocol and dataset that was used to evaluate
the system performance. Then, we present the performance
analysis.

1) Evaluation Protocol and Dataset: In order to eval-
uate the EOR performance of our system, we selected four
on-the-road and fourteen off-the-road locations in the car in-
terior and windshield. Fig. 13 shows the size of the on-the-
road area and the selected locations. Red dots are considered



2024 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 16, NO. 4, AUGUST 2015

Fig. 17. Examples of the three facial expressions under evaluation.

Fig. 18. Evaluation protocol to measure the facial expression impact on head pose estimation.

Whereas, in the dynamic facial expression the subject randomly
and continuously moves the mouth (e.g., talks, open mouth,
smile). Fig. 17 shows examples of these deformations.

The subjects were asked to look in the windshield for five
seconds as an initialization step. Later, subjects were instructed
to look to several particular positions within the car. We selected
a subset of the target locations shown in Fig. 13. Namely, we
used the subset of nine positions: S = { 2, 6, 8, 10, 11, 12, 14,
16, 18} . The remaining locations were redundant for this partic-
ular experiment. The subject first looked to a particular location
for ten seconds, while maintaining a neutral expression. The
subject then performed one of the three expressions, and we
recorded her for another ten seconds. In these 20 seconds, the
subjects did not change their head pose. In total, for every sub-
ject looking at a location we had a 25 seconds video (including
the initialization stage). Fig. 18 illustrates this data collection
process. As in the previous experiment, we did not use the
frames of the initialization stage to compute the performance
measure.

For every expression, we recorded five different subjects. The
population ethnicity distribution was comprised of six Asians
and four Caucasians. Moreover, seven out of ten individuals
wore glasses. In total, we had � 81 000 frames (3 expressions ×
5 subjects × 20 seconds × 30 FPS × 9 positions). We evaluated
the deviation in the head pose angles when the expression
occurred. That is, we computed the difference in the mean head
pose angles between the ten seconds of the neutral expression
stage, and the ten seconds of the expression stage. We computed
the Mean Absolute Error (MAE), the standard deviation for the
neutral (σNoExp), and the expression (σExp) stages.

2) Experiment Results: Tables V–VII summarize the results
in this experiment.

Table V shows how the head pose estimation is robust
against wide open mouth expressions. According to the MAE
measures, roll estimation is minimally affected by this ex-

pression, while yaw and pitch angles are more sensitive. This
is a common effect across all three facial expressions under
evaluation. Yaw estimation suffered the highest MAE for the
top right and windshield top center positions, with 5.51 and
4.96 degrees of deviation. In the pitch angle, the maximum
deviation occurred for the driver mirror and windshield top left,
with a MAE of 4.30 and 4.22, respectively. Errors in yaw and
pitch estimation were induced by problems in the tracking of
the facial landmarks. Incorrect landmark estimation produced a
corrupt 3D model of the driver head, hence errors in head pose
estimation. However, the variance in the head pose estimation
during the no expression (σNoExp) and expression (σExp)
stages did not exhibit any significant difference. Recall that
the open mouth is a static expression, that is, the driver kept
this facial expression during the ten seconds of the expression
stage.

Table VI shows the results obtained for the smile expression.
Similar to the case of the mouth wide open expression, there
is no significant difference in the variance of the estimated
head pose angles. In this case, the smile expression is easier
to track and the tracker got lost less frequently. This resulted
in MAE estimates with less error and variance, except for a
high MAE in the yaw estimation for the navigation system
location.

Table VII shows the results obtained for drivers performing
dynamic expressions. As we can see, the amount of variation
in the head pose estimation has increased remarkably for all
the target locations during the expression stage (σExp). This is
caused by large changes in individuals’ facial expressions dur-
ing this test. However, we can see that the maximum absolute
error for yaw, pitch, and roll angles was similar to the maximum
absolute error of the previously studied facial expressions. The
larger variance in the estimation of the head pose angles is
caused by tracking instabilities while users changed abruptly
from one expression to another.
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TABLE V
IMPACT OF THE OPEN MOUTH EXPRESSION ON HEAD POSE ESTIMATION

TABLE VI
IMPACT OF THE SMILE EXPRESSION ON HEAD POSE ESTIMATION

TABLE VII
IMPACT OF THE DYNAMIC EXPRESSION ON HEAD POSE ESTIMATION

V. CONCLUSION

This paper describes a real-time EOR system using the
video from a monocular camera installed on steering wheel
column. Three are the main novelties of the proposed sys-
tem: (1) Robust face landmark tracker based on the Super-
vised Descent Method, (2) accurate estimation of 3D driver
pose, position, and gaze direction robust to non-rigid facial
deformations, (3) 3D analysis of car/driver geometry for EOR
prediction. The proposed system is able to detect EOR at day
and night, and under a wide range of driver’s characteristics
(e.g., glasses/sunglasses/no glasses, ethnicities, ages, . . .). The
system does not require specific calibration or manual initial-
ization. More importantly, no major re-calibration is necessary
if the camera position is changed or if we re-define a new on-
the-road area. This is due to the explicit use of 3D geometric
reasoning. Hence, the installation of the system in different car
models does not require any additional theoretical development.

The system achieved an accuracy above 90 % for all of
the scenarios evaluated, including night time operation. In

addition, the false alarm rate in the on-the-road area is be-
low 5 %. Our experiments showed that our head pose es-
timation algorithm is robust to extreme facial deformations.
While our system provided encouraging results, we expect
that improving the facial feature detection in challenging
situations (e.g., profile faces, faces with glasses with thick
frames) will boost the performance of our system. Currently,
we are also working on improving the pupil detection using
Hough transform-based techniques to further improve the gaze
estimation.
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