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SEPDP: Secure and Efficient Privacy Preserving
Provable Data Possession in Cloud Storage
Sanjeet Kumar Nayak, Student Member, IEEE, and Somanath Tripathy, Senior Member, IEEE

Abstract—Cloud computing is an emergent paradigm to provide reliable and resilient infrastructure enabling the users (data owners)
to store their data and the data consumers (users) can access the data from cloud servers. This paradigm reduces storage and
maintenance cost of the data owner. At the same time, the data owner loses the physical control and possession of data which leads to
many security risks. Therefore, auditing service to check data integrity in the cloud is essential. This issue has become a challenge as
the possession of data needs to be verified while maintaining the privacy. To address these issues this work proposes a secure and
efficient privacy preserving provable data possession (SEPDP). Further, we extend SEPDP to support multiple owners, data dynamics
and batch verification. The most attractive feature of this scheme is that the auditor can verify the possession of data with low
computational overhead.

Index Terms—Integrity verification, Storage-as-a-Service, Privacy preserving, Dynamic auditing, Batch auditing.
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1 INTRODUCTION

Storage-as-a-service has emerged as a commercial alterna-
tive for local data storage due to its characteristics include
less initial infrastructure setup, relief from maintenance
overhead and universal access to the data irrespective of
location and device. Though it provides several benefits like
cost saving, accessibility, usability, syncing and sharing, it
raises several security threats as data is under the control
of the cloud service provider (CSP). CSP can discard the
rarely accessed data to save space and earn more profit,
or it can lie about the data loss and data corruption, as a
result of software/ hardware failure to protect its reputation.
Therefore, it is necessary to check the possession of data in
the cloud storage [1], [2].

Traditional cryptographic solutions for integrity check-
ing of data, either need a local copy of the data (which
the data users (DUs) do not have) or allow the DUs
to downloads the entire data. Neither of these solutions
seems practical as earlier one requires extra storage and
later alternative increases the file transfer cost. To address
this issue, several schemes including [3], [4], [5], [6] are
proposed which employ blockless verification to verify the
integrity without downloading the entire data. One of the
attractive features of these works is to allow the public
verifier to verify. With public auditability, DUs can recourse
the auditing task to a third party auditor (TPA). It has
expertise and capabilities to convince both the CSP and the
DU [4], [7]. These schemes use provable data possession
(PDP) technique, which gives probabilistic data possession
guarantee by randomly verifying few blocks for ensuring
possession of data in the untrusted cloud storage.

Recently, several schemes [2], [3], [4], [5], [6], [8], [9], [10],
[11], [11], [12], [13], [14], [15] have been proposed to allow
TPA to check integrity of the data stored on the untrusted
cloud. These schemes have their own pros and cons.
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Privacy preserving is essential to prevent TPA to infer
the data using the cloud server’s response while auditing.
However, the schemes proposed in [2], [3] do not achieve
privacy preserving requirement. Though data dynamics is
an important feature to facilitate the data owners to insert,
modify, and delete on a particular block of data, without
changing the meta-data of other blocks, the techniques pro-
posed in [3], [4] do not achieve data dynamics requirement.
Meanwhile, the schemes like [3], [10], [16] could not achieve
batch auditing requirement which ensures that TPA should
be capable enough to deal with the multiple numbers of
simultaneous verification requests from different DUs. This
property is to save computation and communication cost
between CSP and TPA. Unfortunately, the schemes [2], [3],
[4], [11], [12], [13], [15], [16] use pairing based cryptographic
operations which are intensive computation and need more
time.

In this work, we propose a secure and efficient privacy
preserving provable data possession scheme (SEPDP) for
cloud storage. It operates in three phases, namely, key
generation, signature generation and auditing phase. Most
attractive feature of SEPDP is that it does not use any
intensive computation like pairing based operation. Further,
we extend SEPDP to support multiple data owners, batch
auditing, and dynamic data operations. A probabilistic anal-
ysis to detect the integrity of the blocks stored at CSP. We
evaluated the performance of the proposed scheme and
compared with some of the existing popular mechanisms.
We observe that the total time for verification carried out by
TPA in the proposed scheme is less than that of the existing
schemes. This signifies that SEPDP is efficient and suitable
to implement the verification at the low powered devices.

Remainder of this paper is organized as follows. Section
2 discusses the overview of related works in this field.
System model and design goals are presented in Section 3.
The proposed scheme is discussed in Section 4. Extension
of SEPDP to support multiple DOs, batch auditing and data
dynamics requirements are explained in Section 5, 6 and
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7 respectively. Security analysis of the proposed SEPDP is
performed in Section 8. SEPDP is evaluated in terms of per-
formance in Section 9. The concluding remarks are provided
in Section 10.

2 RELATED WORK

Remote data integrity checking protocols can be broadly cat-
egorized into two kinds. The deterministic guarantee based
schemes like [17] [18] and [19], verify each block of data
and therefore require a significant amount of storage and
computation. Alternative kind of schemes called provable
data possession (PDP) include [8], [3], [20] use probabilistic
checking method, in which a few blocks are randomly
selected to detect manipulation. PDP is introduced in [8],
that uses random sampling of a few blocks for integrity ver-
ification. Shacham et al. [3] designed two different integrity
verification mechanisms. One uses pseudo-random function
(PRF) which fails to provide public verifiability, while the
other one uses boneh–lynn–shacham (BLS) signatures [20].
Both the schemes support blockless verification but fail to
provide privacy of the DO’s data. Blockless verification
requires linear combination of sampled blocks which gives
a clue to TPA to extract the data [4]. To preserve privacy
of the data owner supporting blockless verification, Wang
et al. [4] proposed a public auditing scheme and extended
that to support batch auditing further. As a result, TPA can
simultaneously perform multiple auditing requests from
different DUs. But, all these schemes [3], [4], [8] fail to
support data dynamics. Moreover, as signatures of the data
blocks contain index number of the corresponding blocks,
if one block is updated (inserted/modified/deleted), the
corresponding verification meta-data (signature) of all other
blocks need to be updated. The scheme proposed in [16]
uses index hash table (IHT) to support data dynamics in
public auditing mechanism reducing the update overhead.
Unfortunately, this scheme fails to support batch auditing
property. later on, Wang et al. [7] extended their previous
technique [4] to support data dynamics. Yang et al. [11]
proposed an efficient and secure dynamic auditing protocol
that achieves all essential features of public auditing. Also
it consumes lesser computation and communication cost. A
certificateless public auditing scheme for verifying data in-
tegrity in the cloud is proposed by Wang et al. [2]. Although
this scheme does not require certificate for key generation, it
fails to achieve privacy, data dynamics, and batch auditing
properties. But, [2], [3], [4], [8], [11], [15], [16] schemes are
based on pairing based cryptography, which requires more
verification cost in audit phase.

3 SYSTEM MODEL AND DESIGN GOALS

3.1 System Model
A typical cloud data storage model for public auditing as
depicted in Figure 1, consists of four entities, namely, data
owner (DO), data user (DU), cloud service provider (CSP),
and a third party auditor (TPA). Data owners are the entities
who store their data in the cloud. Data users access and
operate on those data kept at CSP. But, operating on the
incorrect data lead to faulty result and create chaos which
necessitate the integrity verification of remotely stored data.

Therefore, the system consists of a third party auditor (TPA)
to verify the integrity of outsourced data.
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Fig. 1. Cloud data storage architecture for public auditing.

Initially, DO shares a secret key with TPA through a
secure channel using any standard technique like SSL/TLS.
Every block of the outsourced data (mi) is tagged with a
signature (σi) computed using the private key of DO. In
the auditing phase, TPA sends a challenge to CSP and CSP
returns a response to proof possession of the data. Thus, the
public auditing schemes are a kind of challenge-response
protocol.

CSP is assumed to be semi-trusted. It executes the pro-
tocol without polluting data integrity actively. At the same
time, it may lie about the incorrectness of the data to save its
reputation. Further, we consider that neither DU nor third
party auditor is colluded with CSP to falsify the integrity
check.

3.2 Design Goals

Following design goals are desired to enable remote data
auditing in above system model.

1) Guarantee for Storage Correctness: CSP can pass the
audit phase only if it possesses the outsourced data
intact ( same as uploaded by DO).

2) Guarantee for Privacy Preserving: TPA fails to infer
the data mi from the response(s) provided by CSP.

3) Blockless Verification: Auditor can be able to verify
the integrity of all the desired blocks at once by
checking a block (linear combination of all those
blocks). This is to reduce the bandwidth consump-
tion.

4) Public Auditability: Any third party other than
DU should be able to correctly verify the integrity
of the data stored in CSP without downloading the
entire outsourced data.

5) Guarantee for Unforgeability: It must be computation-
ally infeasible for CSP to forge a response in the
auditing phase.

6) Batch Auditing: TPA should be capable enough
to deal with the multiple number of verification
requests from different DUs simultaneously. This
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feature saves both the computation cost of TPA as
well as bandwidth consumption between CSP and
TPA.

7) Data Dynamics: The scheme should facilitate the
data owners to perform insert, modify, and delete
operations on a particular block of data, without
changing meta-data of other blocks.

4 THE PROPOSED SCHEME (SEPDP)
In this section, we present the proposed secure and efficient
data possession scheme (SEPDP). SEPDP achieves all the
design goals discussed in previous section. SEPDP consists
of three phases, namely, key generation phase, signature
generation phase, and audit phase. The operations of these
phases are depicted in Figure 2 and discussed below. For
the sake of simplicity, we describe the scheme with a single
DO and extend the scheme to support multiple DOs in
Section 5. Notations used in this work are stated in Table 1.
G, g, p and H(.)(.) are system wide parameters and available
to all the entities.

TABLE 1
Notations used in proposed SEPDP

Notations Meaning
p Large prime in Z∗

p

g Primitive Element in G
H(k)(.) Keyed-hash function

x
R← X x is randomly selected from X
a||b a is concatenated with b

(i) Key Generation Phase

DO chooses a large prime number p such that computing
discrete logarithm problem (DLP) is intractable in Z∗p . Let G
be a group of large prime order p and g ∈ G is the primitive
element. DO chooses a keyed-hash function, denoted as
H(k)(.), defined as {0, 1}∗ × K → Zp

∗. She shares the key
k ∈ K with TPA through a secure channel. Also, she selects
a random number x R← Zp

∗ as private key (SK), calculates
Y (= gx) as public key and publishes.

(ii) Signature Generation Phase

In this phase, DO splits the file M into n blocks as
M = (m1,m2, ...,mn), where mi ∈ Zp

∗. She signs all the
n blocks after choosing a secret random number r U← Zp

∗.
The signature σ〈R, si〉 is computed as

R = gr (1)

si = (mi −Hk(R||i)x)r−1, i = 1, 2, ..., n (2)

and uploads M and σ to the CSP.

(iii) Auditing Phase

In this phase, TPA randomly selects a subset (with c
elements) of set [1, n]. This set is represented as Q. For i ∈ Q
it will generate a random vi ∈ Zq

∗ where q << p. Now,
TPA sends {(i, vi)}i∈Q to the cloud server as challenge.

After receiving the challenge message from TPA, CSP-
computes α, β and γ as

α = R
∑
i∈Q visi (3)

β =
∑
i∈Q

vimi (4)

γ = gβ (5)

and returns ({α, γ,R}) as response.
TPA assures the integrity of M using Equation (6).

γ
?
= αY

∑
i∈Q Hk(R||i)vi (6)

4.1 Correctness

In SEPDP, TPA can verify the integrity of M correctly if
Equation (6) holds. R.H.S. of Equation (6) can be simplified
as follows.

R
∑
i∈Q visiY

∑
i∈Q Hk(R||i)vi

= gr(
∑
i∈Q visi).gx(

∑
i∈Q Hk(R||i)vi)

= gr(
∑
i∈Q vi((mi−Hk(R||i)x)r−1)).gx(

∑
i∈Q Hk(R||i)vi)

= g(
∑
i∈Q vi(mi−Hk(R||i)x)).gx(

∑
i∈Q Hk(R||i)vi)

= g
∑
i∈Q vimi .g−x(

∑
i∈Q Hk(R||i)vi).gx(

∑
i∈Q Hk(R||i)vi)

= g
∑
i∈Q vimi

= gβ

= γ
= L.H.S.

4.2 Blockless Verification

Blockless verification states that, if CSP has n blocks
and corresponding signatures si, then TPA can verify
the integrity of all the n blocks by verifying a random
combination of those.

How it Works?

Let us consider an example for (n =)2 blocks of mes-
sages (m1,m2). In auditing phase, TPA chooses two random
numbers v1 and v2 (vi ∈ Zq

∗) and sends those to CSP.
Consequent upon receiving v1 and v2, CSP computes α and
β using Equation (3) and (4) as follows.

α = Rv1s1+v2s2 (7)

β = v1m1 + v2m2 (8)

It sends α and γ
(
= gβ

)
to TPA. It can verify the correctness

of the two blocks without requiring m1 or m2 as follows.

γ
?
= Rv1s1+v2s2Y Hk(R||1)v1+Hk(R||2)v2 (9)

Similarly, we can extend the proof for n number of blocks
and can show that using a single random combination of
all the n blocks we can check their integrity without the
knowledge of mi separately. Hence, the proposed SEPDP is
blockless verifiable.
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Fig. 2. Schematic diagram of proposed SEPDP.

5 EXTENSION FOR MULTIPLE DOS

Here, we extend SEPDP to support multiple data owners.
Such a model is depicted in Figure 3 in which each data
owner has its own public key and private key. Each
DO signs their corresponding data and stores both data
and signatures in the CSP. TPA uses challenge-response
mechanism to check integrity of the data stored in CSP.
Operation of the scheme is depicted in Figure 4 and
discussed below.

(i) Key Generation Phase

Let d be the number of DOs present in the cloud storage
system. During this phase, jth data owner (DOj) shares a
key kj ∈ K with the TPA. She selects a unique random
number xj ∈ Zp∗ as her private key (SKj , j = [1, d]). Then
she calculates Yj (= gxj ) and publishes it as public key.

(ii) Signature Generation Phase

In this phase, DOj signs mj,i ∈ Zp
∗ resulting

sj,i = (mj,i − Hkj (R||i)xj)r−1 and R = gr. She uploads
mj,i and σj = 〈R, sj,i〉 to CSP. Here, we assume that r is
secretly shared among all the data owners using a secure
group key sharing techniques like [21], [22].
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Fig. 3. Cloud data storage architecture for multiple DOs extension.

(iii) Auditing Phase

To audit integrity of Mj , TPA generates a challenge
message {(i, vi)i∈Q}j∈[1,d] as in SEPDP. Then, CSP finds αj ,

βj and γj for DOj ’s data as, αj = R

∑
i∈Q

visj,i
, βj =

∑
i∈Q

vimj,i

and γj = gβj . CSP sends 〈αj , γj , R〉 as audit proof.
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Fig. 4. Schematic diagram of multiple DO extension of SEPDP.

TPA verifies the integrity of Mj as

γj
?
= αj .Y

∑
i∈Q

Hkj
(R||i)vi

j (10)

5.1 Correctness
In case of multiple DO, TPA can verify integrity of M
correctly if Equation (10) holds. R.H.S. of Equation (10) can
be simplified as follows.

R

∑
i∈Q

visj,i
.Y

∑
i∈Q

Hkj
(R||i)vi

j

= g
r
∑
i∈Q

vi((mj,i−Hkj
(R||i)xj)r−1)

.g
xj
∑
i∈Q

Hkj
(R||i)vi

= g

∑
i∈Q

vimj,i
.g
−xj

∑
i∈Q

viHkj
(R||i)

.g
xj
∑
i∈Q

viHkj
(R||i)

= g

∑
i∈Q

vimj,i

= gβj

= γj
= L.H.S.

6 EXTENSION FOR BATCH AUDITING

Sometimes requests from many data users arise for integrity
verification within a short span of time. Verifying these
requests by TPA one by one would not be a wise decision.
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Fig. 5. Cloud data storage architecture for batch auditing extension.

Batch auditing is the process in which TPA verifies multiple
auditing requests submitted by many DUs (in a batch)
at a time which saves computation time. This can be
achieved by aggregating d verification equations (requested
by different DUs) like Equation (6) into one verification
equation. Such a model is depicted in Figure 5, in which
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Fig. 6. Schematic diagram of batch auditing extension of SEPDP.

each data owner has its own public key and private key.
DO signs their corresponding data and stores both data and
signatures in CSP. TPA uses challenge-response mechanism
to check integrity of data stored in CSP. The operation of
the scheme is depicted in Figure 6 and discussed below.

(i) Key Generation Phase

Let d be the number of DOs present in the cloud storage
system. During this phase, jth data owner (DOj) shares a
key kj ∈ K with the TPA. She selects random numbers
xj ∈ Zp

∗ as their private key (SKj , j = [1, d]). Then she
calculates Yj (= gxj ) and publishes publishes it as public
key.

(ii) Signature Generation Phase

In this phase, DOj signs mj,i ∈ Zp
∗ resulting

sj,i = (mj,i − Hkj (R||i)xj)r−1 and R = gr . It uploads mj,i

and σj = 〈R, sj,i〉 to CSP. Here, we assume that r is secretly
shared among all the data owners using a secure group key
sharing techniques like [21], [22].

(iii) Auditing Phase

To check the integrity of Mj , TPA generates a challenge
message {(i, vi)i∈Q}j∈[1,d] as mentioned in Section 4. Then,

CSP finds α = R

d∑
j=1

∑
i∈Q

visj,i
, βj =

∑
i∈Q

vimj,i, j]
d
i=1 and γ =

g

d∑
j=1

βj
. CSP sends {α, γ,R} as audit proof.

TPA verifies the integrity of Mj as

γ
?
= α.

d∏
j=1

Y

∑
i∈Q

Hkj
(R||i)vi

j (11)

6.1 Correctness

In case of batch auditing extension of SEPDP, TPA can verify
the integrity of Mj correctly if Equation (11) holds. R.H.S. of
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Equation (11) can be simplified as follows.

R

d∑
j=1

∑
i∈Q

visj,i
.
d∏
j=1

Y

∑
i∈Q

Hkj
(R||i)vi

j

= g
r

d∑
j=1

∑
i∈Q

vi((mj,i−Hkj
(R||i)xj)r−1)

.
d∏
j=1

g
xj
∑
i∈Q

Hkj
(R||i)vi

= g

d∑
j=1

∑
i∈Q

vimj,i
.g
−

d∑
j=1

xj(
∑
i∈Q

viHkj
(R||i))

.g

d∑
j=1

xj(
∑
i∈Q

viHkj
(R||i))

= g

d∑
j=1

∑
i∈Q

vimj,i

= g

d∑
j=1

βj

= γ
= L.H.S.

7 EXTENSION FOR DYNAMIC DATA OPERATION

Data owners not only access the data but also dynamically
update (modify/insert/delete) it. In traditional integrity
checking mechanisms, data blocks are mapped with index
number. During the dynamic update of a single block,
verification meta-data of unmodified blocks are also
updated because the mapping of data block with index
number is changed. So, efficient mechanism for public
auditing scheme with dynamic data operations is required.
Along with this, the scheme should be secure against
forgery of verification meta-data. In this section, SEPDP is
extended to support dynamic data operations. The scheme
is depicted in Figure 7 and discussed below.

(i) Key Generation Phase

The DO shares a key k ∈ K with the TPA and selects
a random number x R← Zp

∗ as her private key (SK). She
calculates Y (= gx) and publishes publishes it as public key.

(ii) Signature Generation Phase

In this phase, M is split into n blocks {m1,m2, ...,mn}
and each block mi is split into s sectors as
{mi,1,mi,2, ...,mi,s}. The signature si on block mi is
computed using s random secrets (τ1, τ2, ..., τs) ∈ Zp(= τ).
uj ]

s

j=1 is computed as gτj . The DO builds index-hash
table (IHT) Ψ as ψ]

n
i=1 = {Bi = i, Vi = 1, Ri ∈ {0, 1}∗}.

IHT keeps the record of the changes in the blocks.
It is used in the generation of verification meta-data.
Records of IHT consists of serial number (S No.), block
number (Bi), version number (Vi), and random integer
(Ri). The unique combination of the table (Bi||Vi||Ri)
is used for the generation of the verification meta-data.
Verification meta-data (signature σ = 〈R, si〉) is computed

as si]
n
i=1 =

(
s∑
j=1

τj .mi,j + z1
i −Hk(R)x

)
r−1 and R = gr .

Here, z1
i = Hz(ψi), z =

s∑
j=1

τj and H is a collision resistant

secure hash function. Finally, block-signature pairs are send
to CSP and uj ]

s

j=1, z and Ψ are send to the TPA.

(iii) Auditing Phase

In this phase, TPA generates a challenge message
({(i, vi)}i∈Q) as mentioned in Section 4 and CSP generates
a response message as {α, β,R} where α = R

∑
i∈Q visi ,

β = βj ]
s

j=1 and βj =
∑
i∈Q vimi,j .

TPA verifies Equation (12) to check the integrity of M
with dynamic data operations.

s∏
j=1

u
βj
j .g

∑
i∈Q

viz
1
i

= α.Y

∑
i∈Q

Hk(R)vi
(12)

(iv) Data Updation Phase

To support dynamic data operation, SEPDP is extended
to allow DO to update (modify/insert/delete) on M (out-
sourced). To perform this, DO updates the corresponding
signatures and corresponding entry of IHT. It sends the
signature and the corresponding file (not required in case
of delete operation) to CSP and updated entry of IHT to
TPA. After this, the auditing phase can be carried out to
check the integrity of the updated data. A diagrammatic
representation of this phase is depicted in Figure 8 and
discussed below.

TPA keeps the real time status of dynamic data opera-
tions in Ψ. To update (modify/delete/insert) a data block in
M , DO requests to TPA for ith entry of Ψ, which is provided
consequently.

Modification: If DO wants to modify a block, she in-
creases Vi by one and chooses a new Ri for ith entry in
Ψ. Hence, z1

i is recomputed using the updated values of
the ith entry in Ψ. She re-computes si with updated mi

as s
′

i =

(
s∑
j=1

τj .m
′

i,j + z1
i −Hk(R)x

)
r−1 and sends ψi

′

(updated ith entry of IHT) to TPA and (s
′

i,m
′

i) to CSP.
Insertion: Similarly, when a new block is inserted, ith

position is created in Ψ. Other records are shifted by one
place in Ψ. Bi is modified, Vi is set to 1 and a new
Ri is chosen to constitute a new ith entry in Ψ. z1

i is
updated and si is re-computed with new mi as s

′

i =(
s∑
j=1

τj .m
′

i,j + z1
i −Hk(R)x

)
r−1. She sends ψi

′
(updated

ith entry of IHT) to the TPA and (s
′

i,m
′

i) to the CSP.
Deletion: After receiving IHT, DO replaces the version

number with 0 in the ith position of the IHT. z1
i is updated

and si is re-computed as s
′

i =
(
z1
i −Hk(R)x

)
r−1. She sends

ψi
′

(updated ith entry of IHT) to the TPA and s
′

i to the CSP.
As TPA receives ψi

′
, it replaces the original ith entry of

IHT with the new one. Following receipt of the updated
signature and the block, CSP checks validity of the updated
data as follows. For modify and insert operation, CSP veri-

fies the equation
s∏
j=1

u
m
′
i,j

j .gz
1
i

?
= Rs

′
i .Y Hk(R) and for delete

operation, it verifies the equation gz
1
i

?
= Rs

′
i .Y Hk(R).

7.1 Correctness
In case of extended SEPDP to support dynamic data op-
erations, indeed TPA is able to verify the integrity of M
correctly. To prove the correctness of this scheme, we have
to show that Equation (12) is valid. R.H.S. of Equation (12)
can be simplified as follows.
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DO CSP TPA

Key Generation Phase

Choose g ∈ G
SK : x ∈ Zp∗, PK : Y = gx

Signature Generation Phase

Choose r ∈ Zp∗, R = gr

M = mi]
n
i=1 = {mi,1,mi,2, ...,mi,s}

τ = (τ1, τ2, ..., τs) ∈ Zp
uj ]

s

j=1 = gτj

Ψ = ψ]
n
i=1 = {Bi = i, Vi = 1, Ri ∈ {0, 1}∗}
z =

s∑
j=1

τj , z
1
i = Hz(ψi)

si]
n
i=1 =

(
s∑
j=1

τj .mi,j + z1
i −Hk(R)x

)
r−1

σ = 〈R, sk,i,i=1,...,n〉
〈mi||σ〉−−−−−−−−−−−−−→

〈uj ]sj=1 ||z||Ψ〉−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Auditing Phase

Choose vi ∈ Zq∗
{(i, vi)}i∈Q

{(i, vi)}i∈Q←−−−−−−−−−−
α = R

∑
i∈Q visi

β = βj ]
s

j=1 =
∑
i∈Q vimi,j

〈α, β,R〉
−−−−−−−−−−→(

s∏
j=1

u
βj
j

)
.g

∑
i∈Q

viz
1
i ?

= α.Y

∑
i∈Q

Hk(R)vi

H is a collision resistant secure hash function

Fig. 7. Schematic diagram of dynamic data operation extension of proposed SEPDP.

DO CSP TPA

Data Updation Phase

Bi−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
ψi = {Bi, Vi, Ri}←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

modify()/
delete()/
insert()

σ
′
,mi

′

−−−−−−−−−−−−−−−→
ψi
′

= {Bi, Vi
′
, Ri

′
}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
check()

Fig. 8. Schematic diagram of data updation phase of extended
SEPDP to support dynamic data operations

R
∑
i∈Q visi .Y

∑
i∈Q

Hk(R)vi

= gr
∑
i∈Q visi .g

x
∑
i∈Q

Hk(R)vi

= g
r
∑
i∈Q vi

((
s∑
j=1

τj .mi,j+z
1
i−Hk(R)x

)
r−1

)
.g
x
∑
i∈Q

Hk(R)vi

= g

∑
i∈Q vi

(
s∑
j=1

τj .mi,j+z
1
i

)
.g
−x

∑
i∈Q

Hk(R)vi
.g
x
∑
i∈Q

Hk(R)vi

= g

∑
i∈Q

vi

(
s∑
j=1

τj .mi,j

)
.g

∑
i∈Q

viz
1
i

= g

s∑
j=1

τj

( ∑
i∈Q

vi.mi,j

)
.g

∑
i∈Q

viz
1
i

=
s∏
j=1

u
βj
j .g

∑
i∈Q

viz
1
i

= L.H.S.

8 SECURITY ANALYSIS

In this section, SEPDP is analyzed against unforgeability
and privacy to prove its security. Also, a probabilistic anal-
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ysis for misbehavior detection of CSP is provided.

8.1 Unforgeability

CSP can attempt to break SEPDP in two alternative ways:
(1) It generates a forge signature corresponding to a block
of the file and subsequently forms the correct auditing
response. (2) It generates a forge audit response message
corresponding to (i, vi) without having proper data, which
passes the verification test at TPA. However, following two
theorems prove that it is computationally infeasible for the
CSP to succeed in either of these two ways.

Theorem 1. Given a set of data and the corresponding signatures,
it is computationally infeasible for CSP to generate a forgery of a
signature.

Proof: Based on the operations of the phases of SEPDP,
algorithm B simulates a security game, which consists
of two phases. In phase-1 of the security game, CSP can
request three different kinds of queries to B, which includes
Setup Query, Query for R, and Sign Query. In phase-2 of
the security game CSP generates forgery of a signature.
Algorithm B simulates the security game as follows and
records the result of the queries in a tables corresponding to
the appropriate query.

Setup Query: Consequent upon receiving the Hash
Query from CSP, B sets PK : Y = gx and returns Y to the
CSP.

Query for R: CSP requests for R to B. B chooses
r
U← Zp

∗ and sets R = gr. Then, it returns R to the CSP.

Sign Query: CSP requests for the result of the Sign
Query for the message mi and with it’s identifier i to B. To
respond to the queries of this kind, algorithm B maintains
a table (T lists ), whose tuples are of the form 〈mi, i, ρi, si〉
as explained below. Initially, these entries of the table
are empty. After receiving a Sign Query on input (mi, i),
algorithm B responds as follows.

1) If there is an entry corresponding to (mi, i) in T lists ,
then B returns the corresponding si to the CSP.

2) If there is no entry corresponding to (mi, i) in table
T lists , then the algorithm B chooses ρi

U← Zp
∗ and

sets si = (mi − ρi.x).r−1 and sends si to CSP. B
inserts the tuple 〈mi, i, ρi, si〉 to the list T lists .

Forgery: After phase-1 of the security game is over, it
outputs a forgery si

∗ on (mi
∗, i∗). Below, we show that if

CSP can successfully generate a forgery of a signature, then
B can easily find Hk(R||i∗) without knowing k.

Let CSP has queried qs numbers of Sign Query. So, it has
a set of qs numbers linear equations of the following form.

s1 = (m1 − ρ1.x).r−1 (mod p)
s2 = (m2 − ρ2.x).r−1 (mod p)
s3 = (m3 − ρ3.x).r−1 (mod p)

.

.

.
sqs

= (mqs
− ρqs

.x).r−1 (mod p)

Suppose CSP could solve these qs number of linear
equations with (qs +2) unknowns (ρ1, ρ2, ..., ρqs

,x, r). Con-
sequently, it can generate forgery si

∗(= (mi
∗ − ρi∗.x).r−1)

on (mi
∗, i∗). Then, B learns that ρi

∗ = si
∗−mi

∗.r−1

x.r−1

(= Hk(R||i∗)).
This shows that, if CSP can successfully generate a

forgery of a signature, then B can easily find Hk(R||i∗)
without knowing k. But this contradicts the assumption of
keyed-hash function. Hence, our assumption is wrong. So,
in the proposed SEPDP, it is computationally infeasible to
generate a forgery of a signature by the CSP.

Theorem 2. It is computationally infeasible for CSP to cheat
TPA by generating forgery of an auditing response message,
without having corresponding data.

Proof: CSP can successfully generate a forgery of the audit-
ing response message if it wins the following security game.

TPA sends a verification request {(i, vi)}i∈Q to CSP.
The response on original M would be {α, γ,R} where
γ = gβ and β =

∑
i∈Q vimi. Instead of generating the

correct response, CSP generates a forgery for the response
over the corrupt data M

′
as {α, γ′ , R} where γ

′
= gβ

′

and β
′

=
∑
i∈Q vim

′

i and m
′

i ∈ M
′

for i ∈ Q. Define
∆β = β

′ − β. Here, ∆β is non-zero as vi’s are random
numbers and M

′ 6= M . CSP wins this security game if this
forgery onM

′
clears the verification Equation (6) at the TPA.

Otherwise, it loses the game.
Let us assume that CSP wins the above security game.

Hence, the corrupted response {α, γ′ , R} passes the verifi-
cation Equation (6). So,

γ
′

= R
∑
i∈Q visiY

∑
i∈Q Hk(R||i)vi (13)

But, according to the proposed scheme SEPDP the correct
response {α, γ,R} also passes the verification Equation (6).
Hence,

γ = R
∑
i∈Q visiY

∑
i∈Q Hk(R||i)vi (14)

Now, from the Equations (13) and (14) it is clear that,

γ = γ
′
⇒ gβ = gβ

′

⇒ g∆β = 1

In Zp, for two elements m, n ∈ Zp,∃x ∈ Zp|n = mx. Hence,
given m, n ∈ Zp, g = mθnη where θ and η are random
numbers in Zp. So,

g∆β = 1

⇒
(
mθnη

)∆β
= 1

⇒
(
mθ.∆β .nη.∆β

)
= 1

⇒ nη.∆β = m−θ.∆β

Now taking logarithm and solving the above equation,
we get

n = m−
θ∆β
η∆β

Hence, the solution of the DL problem is x = − θ∆β
η∆β unless

η∆β is zero. However, according to the security game, ∆β
can not be zero (as vi’s are random numbers). As η is a
random element in Zp, so η∆β is zero with probability
1
p where p is a large prime. Hence, a solution to the DL
problem can be found with a probability 1− 1

p . This implies,
if CSP wins the game, then we have the solution of the
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DL problem with a probability of 1 − 1
p , which is quite

high. But this contradicts the DL assumption1. Hence, it is
computationally infeasible for the CSP to cheat TPA with-
out having corresponding data by generating forgery of a
response message in the proposed scheme.

Similarly, one can prove that the multiple DO extension,
batch auditing extension and data dynamics extension of
the SEPDP also satisfy the unforgeable property.

8.2 Privacy Preserving

We have to ensure that TPA can not find DO’s data from
the information exchanged during the auditing phase to
preserve privacy of the data. If TPA can find the value of
β =

∑
i∈Q vimi, then it can obtain {mi}i∈Q by solving a

system of linear equations [4]. Using three cases, we show
that no information regarding β will be leaked to TPA from
the response message {α, γ,R} in SEPDP.

Case 1: According to Equation (5) and (4) γ = gβ and
β =

∑
i∈Q vimi respectively. So, TPA will try to solve

the Equation (5) to find β, which further will be used in
Equation (4) to find mi. Equation of the form (5) is always
equivalent to computing of discrete logarithm problem over
GF (p) as the unknown β appear in the exponent. As there is
no efficient algorithm to solve discrete logarithm problem, it
is computationally infeasible for TPA to derive the value of
β from Equation (5). Thus, privacy of β is guaranteed from
γ.
Case 2: Similarly, no information regarding β can be leaked
from α and R which is described below. We know,

α = R
∑
i∈Q visi

= R
∑
i∈Q vi((mi−Hk(R||i)x)r−1)

= R
∑
i∈Q vi(mir

−1−Hk(R||i)xr−1)

= R(
∑
i∈Q vimi)r

−1

R−
∑
i∈Q Hk(R||i)xr−1

= Rβr
−1

R−
∑
i∈Q Hk(R||i)xr−1

= Rβr
−1

(g−
∑
i∈Q Hk(R||i))

x

Thus, (g−
∑
i∈Q Hk(R||i))

x
blinds Rβr

−1

. As TPA is only hav-
ing (g−

∑
i∈Q Hk(R||i))

x
and g is a public parameter, comput-

ing x from only these two pieces of information is infeasible
due to discrete logarithm assumption.
Case 3: Guessing of β from the response is hard due to
the following reason. We know that γ = g

∑
i∈Q vimi and

vi
R← Zq

∗ is a random number. Assume vi’s are of nv bits,
then there are (2)

nv possible values of vi. if |Q| = c, then for
gβ there are c. (2)

nv possibilities. Similarly, α = R
∑
i∈Q visi

and vi
R← Zq

∗ is a random number. So there are c. (2)
nv

possible values of α. R = gr and r
R← Zp

∗ is a random
number. Assume r is of nr bits, then there are (2)

nr possible
values of R.

1. Let x ∈ Z∗
p , given P and Px ∈ G, it is computationally infeasible

for a polynomial time adversary Adl, to determine x. Mathematically,

Pr[Adl(P, P
x) =x : x ∈ Z∗

p ] ≤ ε

where ε is negligible.

As nv and nr are independent of each other, the proba-
bility that a guessed value of response message will be same
as the original response message is

P =
1

2c. (2)
nv + (2)

nr

Therefore the larger the value of nv and nr, the stronger
security we can achieve. If we choose r of 1024-bit, then
probability P < 1

(2)1024 , which is very negligible. Hence,
we can conclude that the privacy of β is protected against
the TPA.

Similarly, one can prove that the multiple DO extension,
batch auditing extension and data dynamics extension of
the SEPDP also satisfy the privacy preserving property.

8.3 Probability of Misbehavior Detection

In the auditing phase of SEPDP, random sampling method
is adopted for detecting the misbehavior of CSP, which
reduces the workload on TPA. The random sampling tech-
nique divides the file M into n number of blocks. Let
TPA randomly selects c (c < n) number of blocks for
challenge. Assume that CSP modifies x blocks out of n
outsourced blocks by DO and percentage of modified blocks
is denoted as p1. Suppose P be the probability that at least
one block picked by TPA out of n blocks which matches
with one of the blocks modified by CSP. Hence,

P = 1−
n−xCc
nCc

= 1− (n− x)!(n− c)!
(n− x− x)!n!

(15)

In Figure 9, results of probability of detection (P ) with
different number of queried blocks (c) with different per-
centage of corrupted blocks (p1) of the file is shown.
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Fig. 9. Misbehavior detection probability under no. of queried blocks

Suppose DO divides a 500MB file (M ) into 8KB blocks
and uploads. Then, n = 62, 500. Now, if CSP modifies 313
blocks out of 62, 500 blocks of M (i.e. p1 = 0.5%), then
TPA has to randomly select 500 blocks to challenge the
cloud server to achieve the detection probability (P ) of at
least 0.90 (using Equation (15)). Similarly, for p1 = 2.0%,
TPA has to randomly select only 200 blocks out of the 62,500
blocks to achieve the detection probability (P ) of at least
0.99. Hence, SEPDP can detect the corrupted blocks with
higher probability by randomly selecting a few blocks.
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TABLE 2
Notations used for performance evaluation

Notations Meaning
Tp One pairing operation
Te One exponentiation operation
Tm One multiplication operation
Th One hashing operation
Ti One inverse operation
n Number of blocks in F
s Number of sectors in a block
c Number of selected blocks (|Q|)
|p| Size of element in G or Zp

|q| Size of element in Zq

|n| Size of an element of set [1, n]

9 PERFORMANCE ANALYSIS

Performance of SEPDP is discussed in terms of communica-
tion and computation overhead. We have used the notations
for basic operations as depicted in Table 2.

Table 3 compares the communication cost among several
existing schemes. Here, we concentrate only on the com-
munications occur in the auditing phase (i.e. challenge and
response messages). Communication cost of key generation
and signature generation phase is ignored as DOs are not
involved in every challenge response communication that
occurs between CSP and TPA. It is inferred that communi-
cation overhead of SEPDP is identical to that of [7] and [11]
while it incurs less than that of [16].

TABLE 3
Communication overhead comparison

Schemes Challenge Response
Message (in bits) Message (in bits)

Shacham et al. scheme [3] c(|n|+ |q|) 2|p|
Zhu et al. scheme [16] c(|n|+ |q|) 4|p|
Wang et al. scheme [7] c(|n|+ |q|) 3|p|
Yang et al. scheme [11] c(|n|+ |q|) + |p| 2|p|

SEPDP c(|n|+ |q|) 3|p|

A comparison of the computational overhead at different
phases of the proposed scheme with that of the existing
schemes is provided in Table 4. Result shows that, Shacham
et al.’s scheme [3], Zhu et al.’s scheme [16], Wang et al.’s
scheme [7], and Yang et al.’s scheme [11] require 2, 4, 2 and 3
number of bilinear pairing operation respectively. However,
pairing operations (Tp) takes more computational time as
compared to the other operations like Te, Tm, Th and Ti [23].
But, as SEPDP does not need pairing based operations, the
verification process requires low computational overhead
and therefore suitable to implement in low power devices.

Time consumed by TPA is computed for the popular
existing schemes ( [3] and [7]) and compared with SEPDP.
These schemes are implemented using PBC library (version
- 0.5.14) [23] with type A pairing parameters from the PBC
archive. We choose amazon elastic compute cloud (EC2)
cloud platform [24] as a cloud service provider. Figure
10(a) and 10(b) show the average computation time re-
quired by CSP and TPArespectively, varying the number
of queried blocks (c) keeping the total number of blocks
fixed (n = 3000). Figure 10(c) and 10(d) shows the average
computation time consumed by CSP and TPA respectively,
varying the number of blocks (n) keeping the number of

queried blocks (c) fixed (c = 50). It is observed from the
Figure 10(b) and 10(d) that the computation time of the
TPA in the SEPDP is less than that of both Shacham et
al.’s scheme [3] and Wang et al.’s scheme [7]. This is due
to the following reason. Verification Equation (6) used in
our scheme does not contain any time consuming pairing
operation (Tp) and the number of exponentiation operations
(Te) in Equation (6) is independent of c (i.e. number of
queried blocks). On the other hand, in both the schemes
( [3] and [7]), number of exponentiation operations varies
with c (as mentioned in Table 4). Hence, in Figures 10(a) and
10(b), the computation overhead time of SEPDP is nearly
constant as c increases. This is almost constant in Figure
10(c) and 10(d) as the computation time of CSP and TPA do
not depend on n.

Computation time of the batch auditing extension of
SEPDP is less than that of the individual auditing of the
multiple tasks. This is simulated and the results are shown
in Figure 10(e) and 10(f). In Figure 10(e), we varied number
of auditing tasks from 5 to 95 with a gap of 10 keeping
the number of blocks fixed (n = 1000). Here, the total
computational time for the individual auditing for c = 25
and c = 125 is shown as a baseline. Figure 10(f) illustrates
the comparison of total computation time for individual
auditing of multiple tasks in SEPDP and the batch auditing
extension of SEPDP. In this case, we varied number of
auditing tasks from 5 to 95 keeping the number of queried
blocks fixed (c = 25). It is observed (from both Figure 10(e)
and 10(f)) that as the number of tasks increases, batch au-
diting scheme takes lesser time and saving in computation
time increases with the number of auditing requests. This
is due to the following reason. In case of batch auditing
extension of SEPDP, CSP computes one group element α= R

d∑
j=1

∑
i∈Q

visj,i

 instead of d numbers of group elements

αj
(

= R
∑
i∈Q visj,i , j]

d
i=1

)
. Along with this, TPA verifies

only 1 equation instead of d verification equations. So, the
computation time is saved as the number of tasks increases.

We implemented the dynamic data operation extension
of the proposed scheme and results are shown in Figure
10(g). For this, we varied the number of sectors from 5 to
95 by keeping the number of queried blocks as c = 25 and
c = 125 and number of blocks as n = 1000 and n = 3000.
Our scheme saves communication overhead time during the
data updation phase as compared to Zhu et al. Scheme [16],
because SEPDP sends only those entries of the IHT which
correspond to the updated data (mi

′
) instead of the whole

IHT.
Storage correctness, blockless verification, unforgeabil-

ity, public auditability, privacy preserving, data dynamics,
batch auditing are the important features which would
be considered for designing provable data possession in
cloud storage. Table 5 summarizes the comparison of said
features for different existing schemes and SEPDP. Shacham
et al.’s Scheme [3] does not support privacy preserving,
data dynamics, and batch auditing features while Wang
et al.’s Scheme [4] fails to support data dynamics. Zhu et
al.’s Scheme [16] does not support batch auditing feature.
Verification time of SEPDP is faster as compared to the
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TABLE 4
Computation overhead comparison

Schemes Phase Overall ComputationKeyGen Signing Auditing
Shacham et al. scheme

Te 2nTe + nTm + nTh
2Tp + (2c+ 1)Te 2Tp + (2n+ 2c+ 2)Te

[3] +(3c− 1)Tm + cTh +(n+ 3c− 1)Tm + (n+ c)Th
Zhu et al. scheme

2Te
(2n+ 1)Te+ 4Tp + (2c+ 3)Te + (4c 4Tp + (2n+ 2c+ 6)Te + (2n

[16] 2nTm + (n+ 1)Th −1)Tm + cTh +4c− 1)Tm + (n+ c+ 1)Th
Wang et al. scheme

2Te 2nTe + nTm + nTh
2Tp + (2c+ 3)Te 2Tp + (2n+ 2c+ 5)Te

[7] +(3c+ 1)Tm + (c+ 2)Th +(n+ 3c+ 1)Tm + (n+ c+ 2)Th
Yang et al. scheme

Te
(n+ 2)Te+ 3Tp + (2c+ 3)Te 3Tp + (n+ 2c+ 6)Te

[11] nTh +2cTm + cTh +2cTm + (n+ c)Th

SEPDP Te
Te + 2nTm 3Te + (3c+ 1)Tm + cTh 5Te + (2n+ 3c+ 1)Tm + (n+ c)Th + Ti+nTh + Ti
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Fig. 10. Experimental results of the proposed SEPDP

schemes ( [3], [4], [7], [11], [16]).

10 CONCLUSION

In this paper, privacy preserving provable data possession
scheme (named SEPDP) for untrusted and outsourced stor-
age system is presented. Further, SEPDP is extended to
support dynamic data updation by multiple owners and
batch auditing. Security of the scheme is analyzed and
showed that SEPDP protects data privacy from TPA while
infeasible for CSP to forge the response without storing
the appropriate blocks. The most appealing features of the

proposed scheme is to support all the important features
including blockless verification, privacy preserving, batch
auditing and data dynamics with lesser computation over-
head.
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