


1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2841868, IEEE
Transactions on Services Computing

75

80

85

90

95

100

4 8 12 16 20 24 28 32 36 40 44 48

Time (hr.)

EcoFlow-C EcoFlow-D
Direct Jetway
NetSticher

Pe
rc

en
ta

ge�
�of

��tr
an

sfe
rre

d
flo

ws
��w

ith
in�

�de
ad

lin
es

(a) Results on PlanetLab.

75

80

85

90

95

100

4 8 12 16 20 24 28 32 36 40 44 48

Time (hr.)

EcoFlow-C EcoFlow-D
Direct Jetway
NetSticher

Pe
rc

en
ta

ge�
�of

��tr
an

sf
er

re
d

flo
ws

��w
ith

in�
�de

ad
lin

es

(b) Results on EC2.

Fig. 12: Percentage of transferred flows within deadlines at
different time intervals.

65

70

75

80

85

90

95

100

2 4 6 8 10

Flow rate

EcoFlow-C EcoFlow-D
Direct Jetway
NetSticher

Pe
rc

en
ta

ge�
�of

��tr
an

sfe
rre

d
flo

ws
��w

ith
in�

�de
ad

lin
es

(a) Results on PlanetLab.

65

70

75

80

85

90

95

100

2 4 6 8 10

Flow rate

EcoFlow-C EcoFlow-D
Direct Jetway
NetSticher

Pe
rc

en
ta

ge�
�of

��tr
an

sfe
rre

d
flo

ws
��w

ith
in��d

ea
dli

ne
s

(b) Results on EC2.

Fig. 13: Percentage of transferred flows within deadlines at
different flow rates.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 4 8 12 16 20 24 28 32 36 40 44 48

Time (hr.) 

EcoFlow-C
Optimal

To
ta

l b
an

dw
id

th
 c

os
t (

$) 

(a) Different time intervals.

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

2 4 6 8 10

Flow rate 

EcoFlow-C

Optimal

To
ta

l b
an

dw
id

th
 co

st
 ($

) 

(b) Different flow rates.

Fig. 11: Comparison of the total bandwidth cost between
EcoFlow-D and the optimal solution.

a large percentage of flows transmitted within the current
charging volume, so that the bandwidth cost during current
time interval will not further increase. We see that perfor-
mance of different methods with respect to average percent-
age of flows transmitted within the charging volume fol-
lows: EcoFlow-C>EcoFlow-D>JetWay>NetSticher>Direct.
In JetWay and Direct, if a large number of video transfer
requests arrive at a specific time interval, the videos will
be transmitted immediately. And these videos are likely to
result in high bandwidth usage at the time interval and
increase the charging volume. NetSticher performs trans-
missions of delay-tolerant videos only during off-peak time,
and the charging volume is likely to increase when a large
number of non-delay-tolerant videos are transmitted during
the peak hours. EcoFlow-C and EcoFlow-D aim to transfer
flows within the charging volume by postponing the trans-
mission of flows with late deadlines, thus yield the highest
percentage of flows transmitted within the charging volume.

Figure 10(a) and Figure 10(b) show the average percent-
age of flows transmitted within the charging volume at
different flow rates in PlanetLab and EC2, respectively. We
see that as more videos need to transfer between datacenters
hourly, smaller percentage of flows can be transmitted with-
in the charging volume, i.e., the charging volumes on all
links need to increase in order to accommodate higher flow
rates. This is due to the reason that increased bandwidth
is needed to transfer a large number of videos during
each time interval and thus likely to increase the charging
volume. As a result, a larger percentage of flows is likely to
be transmitted by increased charging volume on the links.
The relative performance of different methods mirrors that
in Figure 9(a) and Figure 9(b) due to the same reason.

It is also interesting to check how close EcoFlow-C can
achieve to the optimal. As we mentioned in Section 4.1,
EcoFlow’s bandwidth cost optimization problem is a convex
problem, which can be solved optimally if we have the glob-
al information of all traffic flows (including their starting
times, deadlines, and flow sizes) in the whole time span.
However, the global traffic information is hard to predict
at the beginning in reality. Hence, we conduct a simulation
based on offline data, where we assume the global traffic
information is known by the optimal approach. We create
a larger network with 30 data centers, run the simulation
for 20 times with Matlab [41], and take the average value
of the total bandwidth cost of both EcoFlow-C and optimal

solution. Figure 11(a) and Figure 11(b) compare the total
bandwidth cost of EcoFlow-C and the optimal solution at
different time slots and with different flow arrival rates,
respectively. The results depicted in both figures show that
the total bandwidth cost of EcoFlow-C is lightly higher than
the optimal solution, which is not surprising as EcoFlow-
C has to seek the local optimal in each period, and hence
generates slightly lower performance than the optimal.

Figure 12(a) and Figure 12(b) show the percentage of
video flows that are transferred within their deadlines
across different time intervals in PlanetLab and EC2, respec-
tively. Figure 13(a) and Figure 13(b) show the percentage
of video flows that are transferred within their deadlines at
different flow rates in PlanetLab and EC2, respectively. We
see that the result follows: JetWay>EcoFlow-C>EcoFlow-
D>Direct >NetSticher. NetSticher provides the least
percentage of transferred videos within the deadlines
due to the reason that it postpones the transmission of
delay-tolerant videos from peak hours to off-peak hours,
and if a link’s available bandwidth capacity during the
off-peak hours is not enough to transfer all waiting videos
postponed from peak hours, a number of videos are likely
to miss their transmission deadlines. Direct produces
a higher percentage of transferred videos within the
deadlines than NetSticher, due to the reason that a video
begins transmission whenever the transfer request arrives
at the source datacenter. EcoFlow and JetWay generate a
comparably high percentage of transferred videos within
the deadlines, as they both consider a video’s transmission
deadline when scheduling the video’s transmission and
aim to use the available bandwidth capacities from all links
to finish the video’s transmission before its deadline.

The average percentage of transferred flows within
deadlines in EcoFlow-C is only 0.67% lower than that in
Jetway; while the average percentage of transferred flows
within deadlines in EcoFlow-D is only 0.87% lower than
that in Jetway. This is due to link traffic volume prediction
being potentially less accurate in EcoFlow. If the predic-
tion is accurate, then EcoFlow will have the same results
on meeting deadlines as JetWay. JetWay sends out videos
immediately when the transmission requests arrive at the
source datacenter and it transmits videos using sufficient
bandwidth to guarantee that the videos are transmitted
before their deadlines. On the other hand, EcoFlow may
delay the transmission videos with late deadlines to avoid
increasing the links’ charging volumes. Because the link traf-
fic volume prediction may not be accurate, when the actual
traffic volume on a link is higher than the predicted traffic
volume, the bandwidth capacity is insufficient to transmit
all delayed videos and newly incoming videos, so some
videos cannot be sent within their deadlines. Thus, EcoFlow
generates a slightly higher percentage of transferred videos
within the deadlines than JetWay.

We also tested the scheduling latency of different meth-
ods. Figure 14(a) and Figure 14(b) show the scheduling

11



1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2841868, IEEE
Transactions on Services Computing

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

4 8 12 16

Time (hr.)

EcoFlow-C EcoFlow-D
Direct Jetway
NetSticher

Sc
he

du
lin
g l
ate

nc
y (
s)

(a) Results on PlanetLab.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

4 8 12 16

Time (hr.)

EcoFlow-C EcoFlow-D
Direct Jetway
NetSticher

Sc
he

du
lin
g l
ate

nc
y (
s)

(b) Results on EC2.

Fig. 14: Avg. scheduling latency at different time intervals.

0

0.5

1

1.5

2

2 4 6 8 10
Flow rate

EcoFlow-C EcoFlow-D
Direct Jetway
NetSticher

Sc
he

du
lin
g l
ate

nc
y (
s)

(a) Results on PlanetLab.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

2 4 6 8 10
Flow rate

EcoFlow-C EcoFlow-D
Direct Jetway
NetSticher

Sc
he

du
lin
g l
ate

nc
y (
s)

(b) Results on EC2.

Fig. 15: Average scheduling latency at different flow rates.

5200

5300

5400

5500

5600

5700

5800

5900

6000

6100

1 2 3 4 5 15

# of schedulers

To
tal

 ba
nd

wi
dt
h c

os
t (
$)

(a) Results on PlanetLab.

1980

2000

2020

2040

2060

2080

2100

2120

2140

1 2 3 7

# of schedulers

To
tal

 ba
nd

wi
dt
h c

os
t (
$)

(b) Results on EC2.

Fig. 16: Total bandwidth cost with different # of schedulers.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3 4 5 15

# of schedulers

Sc
he

du
lin
g l
ate

nc
y (
s)

(a) Results on PlanetLab.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 7

# of schedulers

Sc
he

du
lin
g l
ate

nc
y (
s)

(b) Results on EC2.

Fig. 17: Avg. scheduling latency with different # of schedulers.

latency from the 0th to 16th hour of the charging period
in PlanetLab and EC2, respectively. Figure 15(a) and Figure
15(b) show the scheduling latency at the end of the 48 hour
charging period at different flow rates in PlanetLab and EC2,
respectively. We see that the scheduling latency is generally
shorter on EC2 than on PlanetLab. It is because there are
more datacenters on PlanetLab, so we need longer latency
to calculate the available bandwidth capacities of all links
and search alternating paths for indirect video flows when
scheduling video flows. As Direct transfers video without
scheduling, its scheduling latency is 0. We see that when
time evolves or when the flow rate increases, the scheduling
latency generally increases because the system needs to
schedule a larger number of video flows. We also see that
EcoFlow-D generates the highest scheduling latency (i.e.,
about 1.4 second latency). This is because each datacenter
has its own scheduler, and schedulers need to communicate
with each other in order to search alternating paths for
indirect flows. EcoFlow-C reduces the scheduling latency
of EcoFlow-D due to the reason that EcoFlow-D uses a
centralized scheduler to avoid the communication overhead
between different schedulers. JetWay generates a slightly
shorter scheduling latency than EcoFlow-C because it does
not delay the transmission of videos. NetSticher schedules
the videos by postponing the delay-tolerant videos to off-
peak hours, so its computation complexity is low and it gen-
erates shorter scheduling latency than JetWay. From these
figures, we see that the scheduling latency of EcoFlow-C and
EcoFlow-D is relatively short compared to the transmission
time of videos.

5.2 Evaluations of Using Different Num of Schedulers
In this experiment, we used different numbers of schedulers
to schedule video flows. Suppose there are y datacenters in
the system and we used x schedulers, then each scheduler is
responsible for scheduling video flows of by/xc or by/xc+1
data centers. Schedulers communicate with each other to
finish the scheduling operation using EcoFlow-D. When
there is only one scheduler in the system (i.e., centralized
scheduler), the scheduling system is an implementation of
EcoFlow-C; when the number of schedulers equals the num-
ber of datacenters, the scheduling system is an implementa-
tion of EcoFlow-D. Figure 16(a) and Figure 16(b) show the
total bandwidth cost with different number of schedulers in
PlanetLab and EC2, respectively. We see that as the number
of schedulers increases, the total bandwidth cost increases
gradually. This is due to the reason that the schedulers need

to communicate with each other to identify a reroute path
for IFs. When each scheduler is responsible for a smaller
number of datacenters, it is more difficult to gain a full
knowledge of all under-utilized links and less likely to find
an optimal alternative path for routing indirect flows.

Figure 17(a) and Figure 17(b) show the average schedul-
ing latency with different number of schedulers in Planet-
Lab and EC2, respectively. We see that the scheduling laten-
cy increases gradually as the number of schedulers increases
due to the higher communication overhead between the
schedulers that is required in order to find alternative paths
for indirect flows.

5.3 Performance with Scheduler Failures and Rate Lim-
iter Failures

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

0 1 2 3

PlanetLab
EC2

# of failed schedulers/rate limiters

To
ta
l b
an
dw

id
th
 co

st
 ($

)

Fig. 18: Total bandwidth cost
with different numbers of
failed schedulers/rate limiters.

In EcoFlow-D, we propose
a distributed implementa-
tion of EcoFlow to deal
with the single point of
failure problem. When a
scheduler or the rate lim-
iter of a datacenter fails,
the video flows sent from
this datacenter are direct-
ly sent to their destination
datacenters without apply-
ing the scheduling algorith-
m. In this experiment, we
assume different numbers of schedulers or rate limiters fail
and plot the total bandwidth cost in Figure 18. We see
that when the number of failed schedulers or failed rate
limiters increases from 0 to 3, the total bandwidth cost
increases gradually. This is due to the reason that when a
larger number of video flows are sent without applying the
scheduling algorithm, they are likely to increase the links’
charging volumes. As a large number of correlated failures
are rare in datacenters and 95% of failures can be resolved
in 10 min [42], scheduler failures or rate limiter failures will
not significantly degrade the performance of our proposed
EcoFlow system.

5.4 Effectiveness of Setting Initial Charging Volume
In this section, we tested the performance of both EcoFlow-
C and EcoFlow-D when we set an initial charging volume
at the beginning of the charging period according to Section
4.5. We set ϕ in Equation (18) to a fixed value of 0.2, and
varied the value of φ from 0.2 to 0.8.

12



1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2841868, IEEE
Transactions on Services Computing

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 4 8 12 16
Time (hr.)

ϕ=0.2 φ=0.2 
ϕ=0.4 φ=0.2 
ϕ=0.6 φ=0.2 
ϕ=0.8 φ=0.2 Sc

he
du

lin
g l
ate

nc
y (
s)

(a) Results on PlanetLab.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 4 8 12 16
Time (hr.)

ϕ=0.2 φ=0.2 
ϕ=0.4 φ=0.2 
ϕ=0.6 φ=0.2 
ϕ=0.8 φ=0.2 Sc

he
du

lin
g l
ate

nc
y (
s)

(b) Results on EC2.

Fig. 19: Average scheduling latency in EcoFlow-C.

5400

5450

5500

5550

5600

5650

5700

5750

5800

ϕ=0.2 
φ=0.2 

ϕ=0.4 
φ=0.2 

ϕ=0.6 
φ=0.2 

ϕ=0.8 
φ=0.2 

Different settings

To
tal

 ba
nd

wi
dt
h c

os
t (
$)

(a) Results on PlanetLab.

2000

2050

2100

2150

2200

2250

ϕ=0.2 
φ=0.2 

ϕ=0.4 
φ=0.2 

ϕ=0.6 
φ=0.2 

ϕ=0.8 
φ=0.2 

Different settings

To
tal

 ba
nd

wi
dt
h c

os
t (
$)

(b) Results on EC2.

Fig. 20: Total bandwidth cost in EcoFlow-C.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 4 8 12 16
Time (hr.)

ϕ=0.2 φ=0.2 
ϕ=0.4 φ=0.2 
ϕ=0.6 φ=0.2 
ϕ=0.8 φ=0.2 Sc

he
du

lin
g l
ate

nc
y (
s)

(a) Results on PlanetLab.

0

0.2

0.4

0.6

0.8

1

1.2

0 4 8 12 16
Time (hr.)

ϕ=0.2 φ=0.2 
ϕ=0.4 φ=0.2 
ϕ=0.6 φ=0.2 
ϕ=0.8 φ=0.2 Sc

he
du

lin
g l
ate

nc
y (
s)

(b) Results on EC2.

Fig. 21: Average scheduling latency in EcoFlow-D.

5750

5800

5850

5900

5950

6000

6050

6100

6150

6200

ϕ=0.2 
φ=0.2 

ϕ=0.4 
φ=0.2 

ϕ=0.6 
φ=0.2 

ϕ=0.8 
φ=0.2 

Different settings

To
tal

 ba
nd

wi
dt
h c

os
t (
$)

(a) Results on PlanetLab.

2100

2120

2140

2160

2180

2200

2220

2240

2260

2280

ϕ=0.2 
φ=0.2 

ϕ=0.4 
φ=0.2 

ϕ=0.6 
φ=0.2 

ϕ=0.8 
φ=0.2 

Different settings

To
tal

 ba
nd

wi
dt
h c

os
t (
$)

(b) Results on EC2.

Fig. 22: Total bandwidth cost in EcoFlow-D

Since the purpose of setting an initial charging volume
is to reduce the scheduling latency during early time in-
tervals of a charging period, we first present the average
scheduling latency on all links. It is the time span from when
a scheduler receives a sending queue of videos on a link
until the time when the scheduler finished the scheduling
of these video and updating the schedule table. Figure 19(a)
and Figure 19(b) show the average scheduling latency of
EcoFlow-C from the 0th to the 16th hour of the charging
period in PlanetLab and EC2, respectively. We observe that
the scheduling latency is generally shorter on EC2 than on
PlanetLab because there are more datacenters on PlanetLab,
so EcoFlow-C needs longer latency to calculate the available
bandwidth capacities of all links and search alternating
paths for indirect video flows when scheduling video flows.
We also see that the scheduling latency gradually increases
with time. This is because when few videos are pending at
early time intervals, a large portion of videos can be trans-
mitted directly by using available capacities of direct links,
so the scheduling latency is short since the scheduler does
not need to search alternating paths for these videos. As
more video flows are transmitted in the network, available
bandwidth capacities of some links are used up and videos
on these links need to be split and rerouted to other links, so
the scheduler needs longer latency to update the scheduling
table. We also see that larger value of φ leads to shorter
scheduling latency. According to Equation (18), large value
of φ leads to large initial charging volume and high available
bandwidth capacities on the links. The scheduling latency
is short because most videos can be transmitted through
direct links. On the other hand, small value of φ leads to
longer scheduling latency as the scheduler needs to search
alternating paths for some videos that are not able to be
transmitted on direct links.

The negative effect of large value of φ is that it may lead
to underutilization of the initial charging volume, and the
bandwidth cost is not minimized at the end of the charging
period. To further evaluate the effect of initial charging
volume in bandwidth cost reduction, we then plot total
bandwidth cost at the end of the 48 hour charging period
in Figure 20(a) and Figure 20(b). We see that higher value
of φ generally leads to higher bandwidth cost due to the
reason that smaller charging volume may be adequate in
transmitting all video flows. Therefore, it is important to
determine an appropriate initial charging volume to reduce
scheduling latency while constraining bandwidth cost.

We then evaluate the effectiveness of setting initial charg-
ing volume in EcoFlow-D. Figure 21(a) and Figure 21(b)
show the average scheduling latency of EcoFlow-D from
the 0th to 16th hour of the charging period in PlanetLab
and EC2, respectively. Compared to Figure 19(a) and Figure
19(b), we observe that EcoFlow-D generates higher schedul-
ing latency due to the reason that in EcoFlow-D. Figure 22(a)
and Figure 22(b) show total bandwidth cost for EcoFlow-
D at the end of the 48 hour charging period in PlanetLab
and EC2, respectively. We see that the experimental results
concur with that in Figure 20(a) and Figure 20(b) due to the
same reason.

6 CONCLUSIONS
To provide video streaming services to users across different
regions, cloud providers need to transfer video contents be-
tween different datacenters. These inter-datacenter transfers
are charged by ISPs under percentile-based charging model-
s. We take advantage of this particular characteristic of these
models and propose EcoFlow to minimize cloud providers’
payment costs on inter-datacenter traffics. EcoFlow is an
economical and deadline-driven video transfer strategy. It
first estimates the total volume of video traffic needed
to be transmitted between any two datacenters within a
time period, compares it with the charging volume and
calculates the under-utilized traffic volume on each link.
EcoFlow then schedules video flows with the objective that
these flows do not incur additional charges on the link,
guaranteeing that each video flow meets its transmission
deadline. Finally, the under-utilized links with low traffic
burden are used to build alternating paths for video flows
that are estimated to miss their deadlines. To enhance E-
coFlow, we also propose setting each link’s initial charging
volume to reduce the scheduling latency at the beginning
of the charging period. We further discuss how to deal
with link available bandwidth prediction errors and lack
of prior knowledge of the charging volume. Moreover, we
design the implementation of EcoFlow in both centralized
and distributed manner. Experimental results on PlanetLab
and EC2 show the effectiveness of EcoFlow in reducing
bandwidth costs while guaranteeing that each video flow
meets its transmission deadline for inter-datacenter video
transfers. We will study a more tractable formulation of
this bandwidth cost optimization problem in the future. In
addition, considering the uncertainty of video flows over
time, we will apply more sophisticated approaches like

13



1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2841868, IEEE
Transactions on Services Computing

stochastic optimization, Lyapunov, or online algorithms to
further improve the performance of our design. Also, we
will study how to automatically generate the deadline that
satisfies users when it is not indicated.

ACKNOWLEDGEMENTS
This research was supported in part by U.S. NSF grants
OAC-1724845, ACI-1719397 and CNS-1733596, and Mi-
crosoft Research Faculty Fellowship 8300751. An early ver-
sion of this work was presented in the Proceedings of ACM
Multimedia 2015 [43]. We thank Dr. Yuhua Lin and Dr.
Liuhua Chen for their valuable work on this paper.

REFERENCES

[1] A. Khanafer, M. Kodialam, and K. Puttaswamy. To rent or to
buy in the presence of statistical information: The constrained ski-
rental problem. TON, 23(4):1067–1077, 2014.

[2] S. Rajani and T. Rajender. Literature review: Cloud computing-
security issues, solution and technologie. International Journal of
Engineering Research, 3(4):221–225, 2014.

[3] V. Adhikari, Y. Guo, F. Hao, V. Hilt, Z. Zhang, M. Varvello, and
M. Steiner. Measurement study of netflix, hulu, and a tale of three
cdns. TON, 1(99):1–10, 2014.

[4] X. Liao, L. Lin, G. Tan, H. Jin, X. Yang, W. Zhang, and B. Li. Liv-
erender: A cloud gaming system based on compressed graphics
streaming. TON, 1(99):1–10, 2015.

[5] V. K. Adhikari, Y. Guo, F. Hao, M. Varvello, V. Hilt, M. Steiner,
and Z. Zhang. Unreeling netflix: Understanding and improving
multi-cdn movie delivery. In Proc. of INFOCOM, 2012.

[6] Auto scaling in the amazon cloud,
http://techblog.netflix.com/2012/01/auto-scaling-in-amazon-
cloud.html, [accessed in sep. 2015].

[7] Q. Zhu and G. Agrawal. Resource provisioning with budget
constraints for adaptive applications in cloud environments. In
Proc. of HPDC, 2010.

[8] F. Wang, J. Liu, M. Chen, and H. Wang. Migration towards cloud-
assisted live media streaming. TON, 1(99):1–10, 2014.

[9] Y. Wu, C. Wu, B. Li, and L. Zhang. Scaling social media applica-
tions into geo-distributed clouds. TON, 23(3):689–702, 2015.

[10] H. Xu and B. Li. Joint request mapping and response routing for
geo-distributed cloud services. In Proc. of INFOCOM, 2013.

[11] Y. Feng, B. Li, and B. Li. Jetway: Minimizing costs on inter-
datacenter video traffic. In Proc. of Multimedia, 2012.

[12] D. Goldenberg, L. Qiu, H. Xie, Y. Yang, and Y. Zhang. Optimizing
cost and performance for multihoming. In Proc. of SIGCOMM,
2004.

[13] N. Laoutaris and P. Rodriguez. Good things come to those who
(can) wait or how to handle delay tolerant traffic and make peace
on the internet. In Proc. of HotNets-VII, 2008.

[14] N. Laoutaris, G. Smaragdakis, P. Rodriguez, and R. Sundaram.
Delay tolerant bulk data transfers on the internet. In Proc. of
SIGMETRICS, 2009.

[15] L. Nikolaos, S. Michael, X. Yang, and R. Pablo. Inter-datacenter
bulk transfers with netstitcher. In Proc. of SIGCOMM, 2011.

[16] Z. Zhang, M. Zhang, A. Greenberg, Y. Hu, R. Mahajan, and
B. Christian. Optimizing cost and performance in online service
provider networks. In Proc. of NSDI, 2010.

[17] H. Wang, H. Xie, L. Qiu, A. Silberschatz, and Y. Yang. Optimal
isp subscription for internet multihoming: algorithm design and
implication analysis. In Proc. of INFOCOM, 2005.

[18] A. Greenberg, J. Hamilton, D. Maltz, and P. Patel. The Cost of a
Cloud: Research Problems in Data Center Networks. SIGCOMM
Comput. Commun. Rev., 39(1):68–73, 2009.

[19] A. Hussam, P. Lonnie, and W. Hakim. Racs: A case for cloud
storage diversity. In Proc. of SoCC, 2010.

[20] Service Level Agreements. http://azure.microsoft.com/en-
us/support/legal/sla/, [Accessed in Sep. 2015].

[21] Amazon S3. http://aws.amazon.com/s3/, [Accessed in Sep.
2015].

[22] A. Ashraf, F. Jokhio, T. Deneke, S. Lafond, I. Porres, and J. Lil-
ius. Stream-based admission control and scheduling for video
transcoding in cloud computing. In Proc. of CCGrid, 2013.

[23] E. Dijkstra. A note on two problems in connexion with graphs.
Numerische mathematik, 1(1):269–271, 1959.

[24] A. Dhamdhere and C. Dovrolis. Isp and egress path selection for
multihomed networks. In Proc. of INFOCOM, 2006.

[25] R. Van Der, S. Boele, F. Dijkstra, A. Barczyk, G. van Malenstein,
H. Chen, and J. Mambretti. Multipathing with mptcp and open-
flow. In Proc. of SCC, 2012.

[26] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and
A. Vahdat. Hedera: Dynamic flow scheduling for data center
networks. In Proc. of NSDI, 2010.

[27] A. Curtis, J. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,
and S. Banerjee. Devoflow: scaling flow management for high-
performance networks. ACM SIGCOMM Computer Communication
Review, 41(4):254–265, 2011.

[28] C. Hong, M. Caesar, and P. Godfrey. Finishing flows quickly with
preemptive scheduling. ACM SIGCOMM Computer Communication
Review, 42(4):127–138, 2012.

[29] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prab-
hakar, and S. Shenker. pfabric: Minimal near-optimal datacenter
transport. In ACM SIGCOMM Computer Communication Review,
volume 43, pages 435–446, 2013.

[30] J. Tomlin. Minimum-cost multicommodity network flows. Opera-
tions Research, 14(1):45–51, 1966.

[31] J. Lucas and M. Saccucci. Exponentially weighted moving average
control schemes: Properties and enhancements. Technometrics,
32(1):1–29, 1990.

[32] Q. Xu, D. Cheng, and Y. Fu. Traffic feature distribution analysis
based on exponentially weighted moving average. In Prof. of the
IEEE International Conference on Computer Science and Automation
Engineering (CSAE), 2012.

[33] Z. Wu, M. Butkiewicz, D. Perkins, E. Katz-Bassett, and H. Mad-
hyastha. Spanstore: cost-effective geo-replicated storage spanning
multiple cloud services. In Proc. of SOSP, 2013.

[34] J. Douceur, J. Mickens, T. Moscibroda, and D. Panigrahi. Collabo-
rative measurements of upload speeds in p2p systems. In Proc. of
INFOCOM, 2010.

[35] A. Shieh, S. Kandula, A. Greenberg, C. Kim, and B. Saha. Sharing
the data center network. In Proc. of NSDI, 2011.

[36] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat, and
M. Yasuda. Less is more: trading a little bandwidth for ultra-low
latency in the data center. In Proc. of NSDI, 2012.

[37] K. Xu, M. Zhang, J. Liu, Z. Qin, and M. Ye. Proxy caching for
peer-to-peer live streaming. Computer Networks, 2010.

[38] Y. Huang, T. Fu, D. Chiu, J. Lui, and C. Huang. Challenges,
design and analysis of a large-scale p2p-vod system. In Proc. of
SIGCOMM, 2008.

[39] PlanetLab. http://www.planet-lab.org/, [Accessed in Sep. 2015].
[40] Amazon Elastic Compute Cloud.

http://aws.amazon.com/ec2/, [Accessed in Sep. 2015].
[41] Matlab. https://www.mathworks.com/products/optimization.html,

[Accessed in Feb. 2018].
[42] A. Greenberg, J. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,

D. Maltz, P. Patel, and S. Sengupta. Vl2: a scalable and flexible
data center network. In ACM SIGCOMM computer communication
review, volume 39, pages 51–62, 2009.

[43] H. Shen Y. Lin and L. Chen. Ecoflow: An economical and deadline-
driven inter-datacenter video flow scheduling system, short paper.
In Proc. of ACM Multimedia, 2015.

 
 
Haiying Shen received the BS degree in Computer Science and Engineering from Tongji 
University, China in 2000, and the MS and Ph.D. degrees in Computer Engineering from 
Wayne State University in 2004 and 2006, respectively. She is currently an Assistant 
Professor in the Holcombe Department of Electrical and Computer Engineering at 
Clemson University. Her research interests include distributed and parallel computer 
systems and computer networks, with an emphasis on peer-to-peer and content delivery 
networks, mobile computing, wireless sensor networks, and grid and cloud computing. 
She was the Program Co-Chair for a number of international conferences and member of 
the Program Committees of many leading conferences. She is a Microsoft Faculty Fellow 
of 2010 and a member of the IEEE and ACM. 
 
 

 
Cheng-Zhong Xu received B.S. and M.S. degrees from Nanjing University in 1986 and 
1989, respectively, and a Ph.D. degree in Computer Science from the University of Hong 
Kong in 1993. He is currently a Professor in the Department of Electrical and Computer 
Engineering of Wayne State University and the Director of Sun’s Center of Excellence in 
Open Source Computing and Applications. His research interests are mainly in 
distributed and parallel systems, particularly in scalable and secure Internet services, 
autonomic cloud management, energy-aware task scheduling in wireless embedded 
systems, and high performance cluster and grid computing. He has published more than 
160 articles in peer-reviewed journals and conferences in these areas. He is the author of 
Scalable and Secure Internet Services and Architecture (Chapman & Hall/CRC Press, 
2005) and a co-author of Load Balancing in Parallel Computers: Theory and Practice 

Haiying Shen received her BS degree in Com-
puter Science and Engineering from Tongji Uni-
versity, China in 2000, and MS and Ph.D. de-
grees in Computer Engineering from Wayne S-
tate University in 2004 and 2006, respectively.
She is currently an Associate Professor in the
CS Department at the University of Virginia. Her
research interests include distributed computer
systems and computer networks, cloud comput-
ing and cyber-physical systems. She is a Mi-
crosoft Faculty Fellow of 2010, a senior member

of the IEEE and a member of the ACM.

Chenxi Qiu received his BS degree in Telecom-
munication Engineering from Xidian University,
China, in 2009 and Ph.D. degree in Electrical
and Computer Engineering in Clemson Univer-
sity in 2015. He currently is a Postdoc scholar in
the College of Information and Science at Penn-
sylvania State University, PA, United States. His
research interests include cyber security, cyber
physical systems, and cloud computing.

14


